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Abstract
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The Probability of Informed Trade (PIN) model, developed in a series of seminal papers

including Easley and O’Hara (1987), Easley, Kiefer, O’Hara, and Paperman (1996), and

Easley, Kiefer, and O’Hara (1997) has been used extensively in accounting, corporate finance

and asset pricing literature as a measure of information asymmetry.1 The PIN model is based

on the notion, originally developed by Glosten and Milgrom (1985), that periods of informed

trade can be identified by abnormally large order flow imbalances.2 Recently, however,

several papers have documented PIN anomalies where PINs tend to be at their lowest

when information asymmetry should be at its highest (e.g. Aktas, de Bodt, Declerck, and

Van Oppens (2007), Benos and Jochec (2007), and Collin-Dufresne and Fos (2014a)).

We address two research questions in this paper. First, we analyze whether PIN mis-

identifies private information because the underlying model does not fit the order flow data

well. Second, the classic microstructure theories (e.g. Glosten and Milgrom (1985), and Kyle

(1985)) suggest that order flow imbalances as well as variables such as prices and spreads

are related to the arrival of private information. The PIN model, on the other hand, focuses

solely on the response of order flow imbalance to the arrival of private information, ignoring

the price response mechanisms that are described in the classic microstructure literature. We

therefore analyze the extent to which including the price response mechanism is necessary

to empirically identify private information arrival. The answers to these research questions

are important because they imply very di↵erent agendas for this growing area of research.

Specifically, if PIN mis-identifies private information because the model does not fit the order

flow data well, then the PIN model could be extended in such a way that it still relies on

order flow alone, but no longer mis-identifies private information. On the other hand, if

PIN cannot identify private information because it ignores the price response mechanism

then a di↵erent approach involving variables other than order flow is necessary to generate

useful inferences about the arrival of informed trade.

To address these two research questions, we create a variable called the Conditional

1A Google scholar search reveals that this series of PIN papers has been cited more than 3,500 times as
of this writing. Examples of papers that use PIN in the finance and accounting literature include Duarte,
Han, Harford, and Young (2008), Bakke and Whited (2010), Da, Gao, and Jagannathan (2011), and Akins,
Ng, and Verdi (2012).

2Following the literature we define order flow imbalance as the di↵erence between the number of buyer
initiated trades less the number of seller initiated trades. In what follows, we refer to buyer initiated trades
as ‘buys’, seller initiated trades as ‘sells’, and turnover as the number of buys plus sells.
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Probability of an Information Event (CPIE). To compute the CPIE implied by the PIN

model (CPIEPIN), we estimate the PIN model’s parameters using an entire year of data,

and then use the observed market data (i.e. buys and sells) to estimate the posterior or

model-implied probability of an information event for each day in our sample. We then turn

to our first question and examine whether observed variation in CPIEPIN is consistent with

the theory underlying the PIN model. Under the PIN model, private information is identified

solely from the absolute order imbalance. In practice, however, the PIN model may be a poor

description of the data and model misspecification can a↵ect the way it actually identifies

private information. To test this hypothesis, we regress CPIEPIN for each firm-year on

absolute order imbalance, turnover, and their squared terms.

We find that the PIN model primarily identifies information events based on turnover,

controlling for absolute order flow imbalance. This is inconsistent with the underlying mi-

crostructure assumptions of the model. In regressions of CPIEPIN on absolute order im-

balance, turnover, and their squared terms, turnover and turnover squared account for, on

average, around 65% of the overall R2. The identification of information events through

turnover becomes more pronounced late in the sample with the increase in both the level

and variance of turnover.3 For example, for the median stock after 2002, the PIN model

is essentially equivalent to a näıve model that sets the probability of a private information

event equal to one on any day with turnover larger than the annual mean of daily turnover

and zero otherwise. Two limitations of the PIN model combine to create this problem. First,

under the PIN model, increases in expected turnover can only come about through the arrival

of private information. Second, the PIN model’s restrictive distributional assumptions make

it di�cult for the model to match both the mean and the variance of turnover. As a result

of these limitations, when confronted with actual data the model mechanically interprets

periods of above average turnover as periods of private information arrival.

To show that this conflation of turnover with private information is related to the previ-

ous critiques of PIN , we examine an event study similar in spirit to the documented PIN

anomalies. For instance, Benos and Jochec (2007) find that PIN is higher after earnings

3Duarte and Young (2009) propose an extension of the PIN model that accounts for the positive correlation
between buys and sells and thus improves the fit of the model. We show in Internet Appendix A that Duarte
and Young (2009) model also performs poorly late in the sample.
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announcements than before.4 In a similar vein, we examine how well the PIN model iden-

tifies information events around earnings announcements. In contrast to Benos and Jochec

(2007) however, we use CPIEPIN to conduct this event study instead of PIN . There is

a large literature (see Bamber, Barron, and Stevens (2011) for a review) that shows that

turnover is substantially higher around earnings announcements and typically remains high

for a considerable period after the announcement. Since our concern here is the PIN model’s

ability to separate turnover shocks from information events, earnings announcements provide

a good opportunity to examine the model’s performance and allows us to connect our results

with those in previous studies. As in our full-sample regressions, our event study shows that

CPIEPIN is higher after announcements simply due to the higher levels of turnover in the

post-announcement periods.

This mechanical conflation of increases in turnover with the arrival of private information

in the PIN model is a problem because it implies that the most popular measure of private in-

formation in the literature, PIN, does not actually capture its variable of interest. There is no

theoretical reason why turnover should be mechanically associated with the arrival of private

information, once we control for order imbalance. On one hand, trading by informed traders

may increase turnover. On the other hand, liquidity traders may postpone trading when the

arrival of private information is likely leading to a negative relation between turnover and

private information (e.g. Chae (2005)). Moreover, a model that naively associates turnover

with private information arrival ignores the fact that turnover varies for reasons unrelated

to private information. For instance, turnover can increase with disagreement (e.g. Kandel

and Pearson (1995), and Banerjee and Kremer (2010)). Turnover is also subject to calendar

e↵ects because traders coordinate trade on certain days to reduce trading costs (Admati

and Pfleiderer (1988)). Furthermore, turnover can vary due to portfolio rebalancing (Lo and

Wang (2000)) and taxation reasons (Lakonishok and Smidt (1986)).5 Hence, the PIN model

(and the PIN measure) groups all sources of variation in turnover (e.g. disagreement, calen-

4In addition, Aktas, de Bodt, Declerck, and Van Oppens (2007) find that PIN is higher after merger
announcements than before.

5The literature also suggests that turnover after earnings announcements can remain high for many rea-
sons unrelated to the arrival of private information. For instance, traditionally, the literature attributes high
turnover after announcements to disagreement (e.g. Bamber, Barron, and Stevens (2011)). Karpo↵ (1986)
suggests that high turnover after earnings announcements may also be due to divergent prior expectations,
while Frazzini and Lamont (2007) attribute to small investors’ lack of attention.
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dar e↵ects, portfolio rebalancing, taxation, etc.) under the umbrella of private information

arrival.

Having demonstrated that the PIN model essentially treats all shocks to turnover as

private information because it fits the data so poorly, we turn to our second research question.

Namely we analyze the extent to which a model that includes the price response mechanism

generates better inferences about the arrival of informed trade than a model based on order

flow alone. To do so, we compare an extension of the PIN model (the EPIN model) with

the model developed by Odders-White and Ready (2008) (the OWR model). The EPIN

model is based on the same information structure as the PIN model. The key di↵erence is

that the EPIN model fixes the PIN model’s mechanical conflation of turnover and private

information arrival. In contrast to the PIN and EPIN models, the OWR model is based on

Kyle (1985) and uses intraday as well as overnight returns, along with order imbalance, to

identify private information events.

We use the EPIN and OWR CPIEs (CPIEEPIN and CPIEOWR) to compare the models

in three di↵erent ways.6 First, under the assumption that private information should arrive

prior to earnings announcements, rather than after the announcement, we expect that if a

model correctly identifies informed trade, its CPIE will increase prior to the announcement.

We also anticipate that informed trading, and hence CPIEs, will decline rapidly after the

announcement, when investors have the same (now public) information.7 Second, we follow

Cohen, Malloy, and Pomorski (2012) and identify instances of opportunistic insider trades.

If either of the models can successfully detect opportunistic insider trading, then its CPIE

should increase around these trades. Third, it has long been recognized in the literature

(e.g. Hasbrouck (1988, 1991a,b)) that non-information related price changes (e.g. dealer

inventory control) should be subsequently reversed, while information related trades should

not. Therefore, if a model correctly identifies the arrival of private information, we expect

that increases in its CPIE should be associated with smaller future price reversals. Each of

6While the PIN and EPIN models allow for a calculation of the probability of informed trade, the OWR
model does not. However, all three models have a parameter that controls the unconditional probability of
an information event on a given day (↵) and allow for the calculation of CPIE.

7There is considerable evidence suggesting the possibility of high asymmetric information prior to impor-
tant announcements. See for example Brooks (1996), Meulbroek (1992) Christophe, Ferri, and Angel (2004),
Amin and Lee (1997), Frazzini and Lamont (2007), and Hendershott, Livdan, and Schurho↵ (2014).
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these three methods of model comparison has its own unique limitations.8 However, if all of

these methods point to the same conclusions, it seems unlikely that our overall interpretation

would be biased due to the limitations of any specific method.

In answer to our second question, we find that the OWR model performs better than the

EPIN model in all three tests. Specifically, we find that the CPIEOWR increases before earn-

ings announcements and decreases rapidly after announcements, while CPIEEPIN decreases

before announcements. CPIEOWR successfully predicts opportunistic insider trading and is

strongly negatively associated with price reversals. In contrast, CPIEEPIN is only weakly

associated with opportunistic insider and price reversals.

We contribute to the literature because we show that private information measures based

only on order flow (e.g. PIN) perform much worse than those that include the price response

mechanism, for instance the OWR’s ↵. The classic microstructure theories (e.g. Glosten and

Milgrom (1985), and Kyle (1985)) describe a price response mechanism relating returns to

the arrival of private information. Hence it is not surprising that a model that identifies the

arrival of private information solely from order flow imbalance has worse performance than

a model based on returns and order flows. However, it is perhaps surprising that the OWR

model performs so much better than the EPIN model in all of our tests. This suggests that

order flow, however well modeled, is insu�cient to be the sole source of inferences about

private information arrival. Therefore, despite the literature’s strong interest in proxies of

private information based on order flow alone (e.g. Easley, Kiefer, O’Hara, and Paperman

(1996), Easley, Kiefer, and O’Hara (1997), and Duarte and Young (2009)) future research

aimed at building measures of informed trade should also focus on variables such as prices

and spreads as the classic theory suggests.

Our paper is also related to a growing literature that analyzes the extent to which PIN

actually captures information asymmetry. Duarte and Young (2009) and Gan, Wei, and John-

stone (2014) show that the PIN model does not fit the order flow data well. We take these

results one step further and show that because of this poor fit the PIN model mis-identifies

the variable of interest—private information—from turnover. In addition, we extend the

8For instance, it is possible that, for some reason, private information is more prevalent after important
announcements than before.
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PIN model to correct the mechanical conflation of turnover and private information arrival.

This allows us to address whether order flow alone can capture private information arrival

or whether we must incorporate the price response mechanism as in the OWR model. Many

of the papers analyzing the PIN measure estimate PINs around events and test whether

PIN is higher before rather than after an announcement. These studies in general document

that PIN is higher after announcements than before (i.e. PIN anomalies). For instance,

Collin-Dufresne and Fos (2014a) find that PIN and other adverse selection measures are

lower when Schedule 13D filers trade.9 Easley, Engle, O’Hara, and Wu (2008) critique this

line of research, noting that PIN is a stock characteristic rather than a measure of the extent

to which private information is present in a given calendar time period.10 To address this

critique, Easley, Engle, O’Hara, and Wu (2008) develop an extension of the original model

in which PIN is time-varying, and in a paper contemporaneous to ours, Brennan, Huh, and

Subrahmanyam (2015) use conditional probabilities similar to CPIEPIN . We contribute to

this literature in two ways. First, our results indicate that these previously identified PIN

anomalies are at least partially related to the strong connection between CPIEPIN and

turnover that we document. Second, we show that event studies that use daily measures

of private information (e.g. Easley, Engle, O’Hara, and Wu (2008)) can be misleading if

variation in these measures around event announcements is due to variables not necessarily

related to information asymmetry. For instance, Brennan, Huh, and Subrahmanyam (2015)

interpret the fact that their CPIEPIN measures are higher after earnings announcements

than before as evidence of informed trading. We show that CPIEPIN is naively related

to turnover. This suggests that the findings in Brennan, Huh, and Subrahmanyam (2015)

can simply be attributed to the fact that turnover is typically much higher after earnings

announcements.
9Collin-Dufresne and Fos (2014b) partially attribute this finding to informed traders disguising their

trades in periods of high liquidity or timing their trades such that market movements conceal the nature
of their information. Our findings cannot speak to this possibility, instead we show that the PIN model
mechanically attributes all sources of variation in turnover to the arrival of private information.

10Easley, Lopez de Prado, and O’Hara (2012) develop the volume-synchronized probability of informed
trading or V PIN . We do not consider V PIN in this paper because, as Easley, Lopez de Prado, and
O’Hara (2012) point out, V PIN is a measure of order flow toxicity at high frequencies rather than a stock
characteristic that measures adverse selection at lower frequencies as PIN is widely used in the finance and
accounting literature. Moreover, Andersen and Bondarenko (2014) provide detailed critique of the V PIN
measure.
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The remainder of the paper is as follows. Section 1 outlines the data we use for our

empirical results. Section 2 shows that the PIN model mechanically associates variation in

turnover with the arrival of private information. Section 3 extends the PIN model to deal

with this shortcoming and compares a model based on order flow imbalance alone (EPIN)

with a model that identifies private information from both returns and order flow (OWR).

Section 4 concludes.

1 Data

To estimate the PIN, EPIN, and OWR models, we collect trades and quotes data for all

NYSE stocks between 1993 and 2012 from the NYSE TAQ database. We require that the

stocks in our sample have only one issue (i.e. one PERMNO), are common stocks (share code

10 or 11), are listed on the NYSE (exchange code 1), and have at least 200 days worth of

non-missing observations for the year. Our sample contains 1,060 stocks per year on average.

Despite our sample selection criteria, about 36% (25%) of the stocks in our sample are in

the top (bottom) three Fama-French size deciles. For each stock in the sample, we classify

each day’s trades as either buys or sells, following the Lee and Ready (1991) algorithm. In

our analysis, we define turnover as the sum of daily buys and sells. Internet Appendix B

describes the computation of the number of buys and sells.

We estimate both the PIN and EPIN models using only the daily number of buys and

sells (Bi,t and Si,t). The OWR model, however, also requires intraday and overnight returns

as well as order imbalances. Following Odders-White and Ready (2008) we compute the

intraday return at day t as the volume-weighted average price (VWAP) at t minus the

opening quote midpoint at t plus dividends at time t, all divided by the opening quote

midpoint at time t.11 We compute the overnight return at t as the opening quote midpoint

at t + 1 minus the VWAP at t, all divided by the opening quote midpoint at t. The total

return, or sum of the intraday and overnight returns is the open-to-open return from t to

t + 1. We compute order imbalance (ye) as the daily share volume of buys minus the share

11The opening quote midpoint is not available in TAQ in many instances. When the opening quote
midpoint is not available, we use the matched quote of the first trade in the day as a proxy for the opening
quote.
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volume of sells, divided by the total share volume. We follow Odders-White and Ready

and remove systematic e↵ects from returns to obtain measures of unexpected overnight and

intraday returns (ro,i,t and rd,i,t). See Internet Appendix B for details.

Like Odders-White and Ready (2008), we remove days around unusual distributions or

large dividends, as well as CUSIP or ticker changes. We also drop days for which we are

missing overnight returns (ro,i,t), intraday returns (rd,i,t), order imbalance (ye), buys (B),

or sells (S). Our empirical procedures follow those of Odders-White and Ready with two

exceptions. First, OWR estimate ye as the idiosyncratic component of net order flow divided

by shares outstanding. We do not follow the same procedure as OWR in defining ye because

we find that estimating ye as we do results in less noisy estimates. Specifically, we find

that ye defined as shares bought minus shares sold divided by shares outstanding, as in

Odders-White and Ready (2008), su↵ers from scale e↵ects late in the sample, when order

flow is several orders of magnitude larger than shares outstanding. Second, Odders-White

and Ready remove a whole trading year of data surrounding distribution events, but we only

remove one trading week [-2,+2] around these events.

For the event study portion of our analysis, we examine earnings announcements. Our

sample of earnings announcements includes all CRSP/COMPUSTAT firms listed in NYSE

between 1995–2009 for which we have exact timestamps collected from press releases in

Factiva which fall within a [-1,0] window relative to COMPUSTAT earnings announcement

dates following Dong, Li, Ramesh, and Shen (2015). Because we have exact timestamps

for the earnings announcements, we can cleanly separate between the pre and post event

periods, thus avoiding ambiguity about when exactly the information becomes public. To

avoid any confusion with respect of the timing of the events in the OWR model, we remove

all announcements occurring on non-trading days. Our final sample includes 21,979 earnings

announcements.

We also examine a sample of opportunistic insider trades, as defined in Cohen, Malloy,

and Pomorski (2012), from the Thomson Reuters’ database of insider trades. In order to

classify a trader as opportunistic or routine, we require three years of consecutive insider

trades. We classify a trader as routine if she places a trade in the same calendar month

for at least three years. All non-routine traders’ trades are classified as opportunistic. Co-
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hen, Malloy, and Pomorski (2012) show that opportunistic insider trades predict abnormal

returns, information events, and regulator actions, which is consistent with the presence of

private information. Our event sample includes 32,676 opportunistic insider trades.

Table 1 contains summary statistics of all the variables used to estimate the models.

Panel A gives summary statistics of our entire sample, Panel B displays the summary statis-

tics for the days of earnings announcements, and Panel C displays the summary statistics

for opportunistic insider trading days.

2 Why does PIN fail?

This section addresses whether PIN mis-identifies private information because the under-

lying model does not fit the data well. Section 2.1 briefly describes the PIN model and

CPIEPIN . Section 2.2 shows the results of regressions of CPIEPIN on absolute order

imbalance and turnover. Section 2.3 shows how CPIEPIN varies around earnings announce-

ments. The results in Sections 2.2 and 2.3 show that the PIN model identifies the arrival of

private information from increases in turnover.

2.1 Description of the PIN model

The Easley, Kiefer, O’Hara, and Paperman (1996) PIN model posits the existence of a liq-

uidity provider who receives buy and sell orders from both informed traders and uninformed

traders. At the beginning of each day, the informed traders receive a private signal with

probability ↵. If the private signal is positive (which occurs with probability �), buy orders

from informed and uninformed traders arrive following a Poisson distribution with intensity

µ + ✏B, while sell orders come only from the uninformed traders and arrive with intensity

✏S. If the private signal is negative (with probability 1 � �), sell orders from informed and

uninformed traders arrive following a Poisson distribution with intensity µ + ✏S, while buy

orders come only from the uninformed traders and arrive with intensity ✏B. If the informed

traders receive no private signal, they do not trade; thus, all buy and sell orders come from

the uninformed traders and arrive with intensity ✏B and ✏S, respectively. Fig. 1 shows a tree

diagram of this model. The di↵erence in arrival rates captures the intuition that on days

with positive private information, the arrival rate of buy orders increases over and above the
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normal rate of noise trading because informed traders enter the market to place buy orders.

Similarly, the arrival rate of sell orders rises when the informed traders seek to sell based

on their negative private signals. Therefore, the PIN model identifies the arrival of private

information through increases in the absolute value of the order imbalance.

The model also ties variations in turnover to the arrival of private information. Specif-

ically, let the indicator Ii,t take the value of one if an information event occurs for stock

i on day t, and zero otherwise. Note that under the model the number of buys plus sells

(turnover) is distributed as a Poisson random variable with intensity:

�(Ii,t) =

(
✏B + ✏S when Ii,t = 0

✏B + ✏S + µ when Ii,t = 1
(1)

Thus, under the PIN model, private information is necessarily the cause of any variation in

expected daily turnover.

To formalize the concept of CPIEPIN , let Bi,t (Si,t) represent the number of buys (sells)

for stock i on day t and ⇥PIN,i = (↵i, µi, ✏Bi , ✏Si , �i) represent the vector of the PIN model pa-

rameters for stock i. Let DPIN,i,t = [⇥PIN,i, Bi,t, Si,t]. The likelihood function of the Easley,

Kiefer, O’Hara, and Paperman (1996) model is
Q

T

t=1 L(DPIN,i,t), where L(DPIN,i,t) is equal to

the likelihood of observing Bi,t and Si,t on a day without private information (LNI(DPIN,i,t))

added to the likelihood of Bi,t and Si,t on a day with positive information (LI+(DPIN,i,t)) and

to the likelihood of Bi,t and Si,t on a day with negative information (LI�(DPIN,i,t)). Each

of the likelihood functions (LNI(DPIN,i,t), LI+(DPIN,i,t) and LI�(DPIN,i,t)) corresponds to a

node of the tree in Fig. 1. See Internet Appendix C for details.

Using the PIN model, for each stock-day, we compute the probability of an information

event conditional both on the model parameters and on the observed total number of buys

and sells. For the PIN model, we compute CPIEPIN,i,t = P [Ii,t = 1|DPIN,i,t]. This prob-

ability is given by (LI�(DPIN,i,t) + LI+(DPIN,i,t))/L(DPIN,i,t). CPIEPIN,i,t represents the

econometrician’s posterior probability of an information event given the data observed on

that day, and the underlying model parameters.

Note that if we condition down with respect to the data, CPIEPIN,i,t reduces to the

model’s unconditional probability of information events (↵i). The unconditional probability

represents the econometrician’s beliefs about the likelihood of an information event before
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seeing any actual orders or trades. In the absence of buy and sell data, an econometrician

would assign a probability ↵i to an information event for stock i on day t, where ↵i =

E[CPIEPIN,i,t] and the expectation is taken with respect to the joint distribution of Bi,t

and Si,t. The PIN of a stock, defined as ↵µ

↵µ+✏B+✏S
, is the unconditional probability that

any given trade is initiated by an informed trader. CPIE and PIN are linked via the

unconditional probability of an information event, ↵.

We estimate the PIN model numerically via maximum likelihood for every firm-year in

our sample. The estimation procedure is similar to that used in Duarte and Young (2009).

The parameter estimates are used for computing CPIEPIN in Sections 2.2 and 2.3. Internet

Appendix C provides details about the maximum likelihood procedure and the calculation

of CPIEPIN .

Table 2 contains summary statistics for the parameter estimates of the PIN model. Table

2 also contains summary statistics of the cross-sectional sample means and standard devia-

tions of CPIEPIN . The results in Table 2 show that the mean CPIEPIN behaves exactly

like ↵. Hence, changes in CPIEPIN and changes in the estimated ↵ are analogous. Fig. 2

Panel A shows how the distribution of ↵ changes over time. Interestingly, the PIN model

↵ increases over time, with the median PIN ↵ rising from about 30% in 1993 to 50% in

2012.12 Panel B of Fig. 2 plots the time series of PIN . Note that PIN decreases over time

in spite of the fact that ↵ increases. This happens because, according to the PIN model,

the intensity of noise trading is increasing over time while the intensity of informed trading

remains relatively flat as shown in Panel C of Fig. 2. It is important to note, however, that

the time series patterns of the model parameters in Fig. 2 have no implications for how the

PIN model identifies private information.

We also estimate the parameter vectors ⇥PIN,i in the period t 2 [�312,�60] before an

earnings announcement. These parameter estimates are used to compute the CPIEs in

Section 2.3. The summary statistics of the parameter estimates for the event studies are

qualitatively similar to those in Table 2 and in Figure 2.

12The increase in our estimated PIN model ↵ parameters is somewhat larger than that in Brennan, Huh,
and Subrahmanyam (2015). This small di↵erence arises because Brennan, Huh, and Subrahmanyam (2015)
have a larger number of stocks per year due to the fact that we apply sample filters similar to those in
Odders-White and Ready (2008). In fact, without these filters, the increase in our estimated PIN model ↵
parameters from 1993 to 2012 is comparable to that in Brennan, Huh, and Subrahmanyam (2015).
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2.2 How does the PIN model identify private information?

This section analyzes how the PIN model actually identifies private information. In the-

ory, the PIN model identifies information events from changes in the absolute order flow

imbalance. Empirically, however, the PIN model may produce such a poor description of

the order flow data that the model actually mis-identifies the variable of interest — private

information. To analyze how the PIN model identifies private information in practice, we

regress CPIEs on absolute order imbalance and turnover in Section 2.2.1. The results of

these regressions show that on average 65% of the variation in CPIEPIN is explained by

turnover instead of absolute order imbalance. The intuition for this failure of the PIN model

can be clearly seen in the scatter plot of buys and sells for Exxon-Mobil in Section 2.2.2. This

scatter plot shows that the model mechanically identifies the arrival of private information

from turnover. In fact, the PIN model essentially assigns probability one to the arrival of

private information on any day when turnover is above the average daily turnover in the

year and zero otherwise. As a result, the PIN model naively groups all sources of variation

in turnover (e.g. disagreement, calendar e↵ects, portfolio rebalancing, taxation, etc.) under

the umbrella of private information arrival. In Section 2.2.3, we show that this naive identi-

fication of private information happens not only for Exxon-Mobil but also for the majority

of the stocks in our sample following the increase in turnover in the early 2000s.

Given the strong connection between CPIEs and the unconditional probability of infor-

mation arrival (↵), our results in this section call into question the use of PIN as proxy for

private information. While there are other parameters in the model (i.e. µ, ✏B and ✏S), these

parameters are jointly identified with ↵. Hence it seems extremely unlikely that in the joint

identification of the model parameters, biases in the other parameters ‘correct’ the biases in

↵ in such a way that PIN is ‘rescued’ as a reasonable proxy for private information. Thus,

while our CPIE results do not speak directly to µ, ✏B and ✏S, they still call into question

PIN as a measure of private information.

2.2.1 Regression Tests

Since there are many moments that the PIN model can fail to match, there are many tests

that might reject the PIN model (e.g. Duarte and Young (2009)). Our regression tests

12



are not designed to analyze whether the PIN model matches particular moments in the

data but instead are focused on how the PIN model identifies the fundamental variable of

interest—private information. Specifically, our analysis is anchored around the regression

CPIEPIN = ↵+ �0|B�S|+ �1|B�S|2 + �2turn+ �3turn2 + ". Since CPIEPIN is a direct

measure of private information according to the PIN model, this regression reveals how the

PIN model actually identifies private information.

To formally show that the PIN model identifies private information from turnover instead

of order flow, we compare the results from regressions with data created by simulating the

PIN model to results from regressions with real data. To create the simulated data, we

first estimate the parameters of the PIN model for each firm-year in our sample. Then,

for each firm-year, we generate 1,000 artificial firm-years’ worth of data (i.e. Bi,t and Si,t)

using the estimated parameters. We then compute the CPIEPIN,i,t for each trading day

in a simulated trading year and regress these CPIEs absolute order flow imbalance and

turnover. The results of the regressions using simulated data are useful because they reveal

how the PIN model is intended to identify private information arrival and also allow us to

build empirical distributions of the R2s of the regressions of CPIEs on order imbalance and

turnover under the null hypothesis that the PIN model correctly describes the order flow

data.

Panel A of Table 3 presents the results of yearly multivariate regressions of CPIEPIN

on absolute order flow imbalance |B � S| and |B � S|2. We add squared terms to these

regressions to account for nonlinearities in the relationship between CPIEPIN and |B � S|.

We average the simulated results for each PERMNO-Year and report in Panel A of Table

3 the median coe�cient estimates and t-statistics. The coe�cients are standardized so

they represent the increase in CPIEPIN due to a one standard deviation increase in the

corresponding independent variable. We also report the average of the median, the 5th, and

the 95th percentiles of the empirical distribution of R2s of these regressions generated by the

1,000 simulations. In general, the coe�cients are highly statistically significant and the R2s

are high. This is consistent with intuition that if the model were literally true, the absolute

order imbalance could be used to infer the arrival of private information.

The columns of Table 3 labeled as ‘R2
inc.

’ include statistics on the increase in the R2 that
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is due to the inclusion of turnover (turn) and turnover squared (turn2) in the regressions.

Specifically, R2
inc.

is equal to the di↵erence between the R2 of the extended regression model

with turnover terms and the R2 of a regression that includes only order imbalance terms.

We report the average of the median, the 5th, and the 95th percentiles of the R2
inc.

s of these

regressions across the 1,000 simulations. The incremental increase in R2s are relatively low,

with an average value of around 10%, which implies that, under the model’s data generating

process, turnover has only modest incremental power in explaining CPIEPIN . The picture

that emerges from these regressions is that if the PIN model were a perfectly accurate

representation of trading activity, CPIEPIN would be determined solely by the order flow

imbalance on each day.

Panel B of Table 3 reports regression results for the real rather than simulated data.

With the real data, the picture is very di↵erent. The R2s of the regressions of CPIEPIN on

|B � S| and |B � S|2 are much smaller than those in the simulations. On the other hand,

the incremental R2s from turnover are much higher than those in Panel A. The incremental

R2 also increases over time with a value of about 36% in 1993, to nearly 46% in 2012. This

implies that turnover and turnover squared explain a much larger degree of variation in

CPIEPIN than order imbalance. In fact, the average ratio of the median R2s, R2
inc.

/(R2 +

R2
inc.

), is about 65%. The di↵erence arises because, in the real data, absolute order flow and

turnover are only weakly correlated. For instance, large absolute order flow imbalances are

possible when turnover is below average, and vice versa. Under the PIN model, however,

the two are highly correlated.

We test the hypothesis that R2
inc.

s in the actual data are consistent with those generated

under the PIN model. Panel B reports the average p-value (the probability of observing an

R2
inc.

in the simulations at least as large as what we observe in the data) across all stocks, and

the frequency that we reject the null at the 5% level implied by the distribution of simulated

R2
inc.

s. The PIN model is rejected in about 89% of the stock-years in our sample, and there

is on average less than a 7% chance of the PIN model generating R2
inc.

s as high as what we

see in the data.

The results in Table 3 indicate that the PIN model identifies private information from

increases in turnover, as opposed to changes in order imbalances for the majority of the
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sample. These findings are inconsistent with the microstructure assumptions of the PIN

model—controlling for order imbalance there should be no room for turnover in explaining

private information arrival.

2.2.2 Exxon-Mobil Scatter Plots

To understand the intuition behind the results in Table 3, consider the scatter plot of real and

simulated order flow data for Exxon-Mobil in Fig. 3. Panels A and B plot simulated and real

order flow for Exxon-Mobil in 1993 and 2012 respectively, with buys on the horizontal axis

and sells on the vertical axis. Real data are marked as +, and simulated data as transparent

dots. The real data are shaded according to the CPIE, with darker points (+ magenta)

representing low and lighter points (+ cyan) high CPIEs. Panels C and D plot the CPIEPIN

as function of turnover. The vertical lines in these panels represent the annual mean of daily

turnover.

Panel A of Fig. 3 illustrates the central intuition behind the PIN model. The simulated

data comprise three types of days, which create three distinct clusters. Two of the clusters are

made up of days characterized by relatively large order flow imbalance, with a large number

of sells (buys) and relatively few buys (sells). The third group of days has relatively low

numbers of buys and sells because there is no private information arrival. Generalizing from

this figure, days with large order flow imbalances correspond to informed traders entering

the market in the PIN model.

The real data, on the other hand, show no distinct clusters in Panel A, and in Panel

B of Fig. 3 the PIN model’s three clusters barely overlap with even a small portion of

the data. This implies that the model cannot account for existence of the majority of the

daily observations of order flow for Exxon-Mobil in 2012. In essence, the model classifies

almost all daily observations as extreme outliers. The intuition for this is that the PIN

model assumes that order flow is distributed as a mixture of three bivariate Poisson random

variables (i.e. the three clusters in Panels A and B). The mean and the variance of a Poisson

random variable are equal and, as a consequence, the Poisson mixtures behind the PIN model

cannot accommodate the high level and volatility of turnover that we observe, especially in

the later part of the sample.
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Panels A and B also plot a line that separates the scatter plots in two regions. All the

observations below (above) these lines have turnover below (above) the annual mean of daily

turnover. These lines along with the CPIE color scheme for the observed data suggest that

the PIN model is mechanically identifying private information from turnover. To clarify this

mechanical identification, Panels C and D plot CPIEPIN as function of turnover. Panels C

and D show that the PIN model essentially classifies days with above average turnover as

private information days (i.e. CPIEPIN equal to one) and days with below average turnover

as days without private information (i.e. CPIEPIN equal to zero). The reason for this me-

chanical conflation of turnover with private information arrival is that under the PIN model

expected turnover can only vary because of the arrival of private information (see Equation

1). Hence the poor fit to the turnover data along with the connection between turnover and

arrival of private information in the PIN model causes the model to mechanically identify

shocks to turnover as due to the arrival of private information.

Fig. 3 also emphasizes the mechanical nature of the relation between CPIEPIN and

turnover. In 2012, the PIN model identifies almost all days with higher than average turnover

as days with private information events. Note that this identification does not necessarily

relate to the possibility, suggested by Collin-Dufresne and Fos (2014b), that informed traders

sometimes choose to trade on days with high liquidity or turnover. Naturally, it is possible

that informed traders do in fact trade on some days with high turnover. However, the point

here is that the PIN model identifies essentially all days with above average turnover as

information events.

2.2.3 CPIENaive

Fig. 3 shows the PIN model’s naive identification of private information events for one stock,

and in this section we show that this is not an isolated example. In fact, the problem is

widespread. To quantify how often the PIN model classifies information events as simple

function of turnover we define

CPIENaive,i,t =

(
0, if turni,t < turni

1, if turni,t � turni

(2)

That is, CPIENaive,i,t is a dummy variable equal to one when turnover for stock i on day t

(turni,t) is larger than or equal to the annual average of daily turnover of stock i (turni) and
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zero otherwise. To our knowledge there is no paper in the literature that proposes identifying

private information in similar manner.13 It is clear, however, from Panel D of Fig. 3 that

the PIN model essentially identifies the arrival of private information for Exxon-Mobil in

2012 according to this rule. We use CPIENaive to gauge the extent to which the PIN model

conflates the arrival of private information with turnover. Specifically, Panel A of Fig. 4

shows the distribution of the fraction of days for which CPIEPIN is identical to CPIENaive

(|CPIEPIN �CPIENaive| < 10�10). CPIEPIN and CPIENaive are identical for about 85%

of the annual observations for the median stock since 2002.

Another way to gauge the extent to which the PIN model breaks down later in our sample

period is to count the number of days that the PIN model classifies as outliers. Panel B of

Fig. 4 shows the fraction of days for the median stock-year which the PIN model classifies

as “outliers” (likelihoods smaller than 10�10). According to the PIN model, for the median

stock about 60% (90%) of the annual observations are classified as outliers in 2005 (2010).14

Figs. 3 and 4 also give the intuition for why the median PIN ↵ increases over time in Fig.

2. To see this, recall that ↵ is the unconditional expected value of CPIEPIN . Therefore,

as we observe more CPIEPIN values approaching one, the estimated PIN ↵ must increase.

In fact, the median PIN ↵ becomes close to 50% later in the sample which consistent with

the fact that the PIN model assigns a CPIEPIN equal to one (zero) to days with turnover

above (below) the average.

2.3 Relating PIN anomalies to turnover

The previous section shows that the PIN model often identifies private information from

turnover. The question remains, however, whether this is merely an inconsequential speci-

fication issue or whether this changes the interpretation of results in the existing literature

(e.g. Aktas, de Bodt, Declerck, and Van Oppens (2007), Benos and Jochec (2007), Bren-

nan, Huh, and Subrahmanyam (2015), and Easley, Engle, O’Hara, and Wu (2008)). To

13Stickel and Verrecchia (1994) propose identifying information arrival in general with a similar measure,
but not private information in particular.

14O’Hara, Yao, and Ye (2014) find that high-frequency trading is associated with an increase in the use of
odd lot trades, which do not appear in the TAQ database. Therefore, estimates of the PIN model parameters
computed using recent TAQ data may be systematically biased. More broadly, Fig. 4 indicates that even if
the PIN model are estimated using data that includes odd lot trades, the model will still be badly misspecified
late in the sample.
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address this, we examine how well the PIN model identifies information events around earn-

ings announcements. Turnover is typically much higher around earnings announcements

(e.g. Bamber, Barron, and Stevens (2011)) hence earnings announcements provide a good

laboratory to examine this question.

Unlike a standard event study, we focus on movements in CPIE rather than price move-

ments. For each model, we examine the period t 2 [�20, 20] around the event. To do so,

we estimate the parameter vector ⇥PIN,i in the period t 2 [�312,�60] before the event and

then compute the daily CPIEs for the period t 2 [�20, 20] surrounding the announcement.

Prior studies estimate the parameters of the model in various windows around an event in

order to compute the PIN . Our procedure is di↵erent in that we estimate the parameters

of the model one year prior to the event and then employ the estimated parameters as if we

were an econometrician observing the market data (i.e. buys and sells) and attempting to

infer whether an information event occurred. Table 1 Panel B presents summary statistics

for order imbalance, intraday returns, overnight returns, number of buys, and the number

of sells for earnings announcement days (t = 0).

Panel A of Fig. 5 shows the average CPIEPIN in event time for our sample of earn-

ings announcements. The graph shows that, under the PIN model, the probability of an

information event increases prior to the event, starting below 55% 20 days before the an-

nouncement and peaking above 80% on the day after the announcement. The rise in the

probability of an information event prior to the announcement could be consistent with a

world where informed traders generate signals about earnings and trade on this information

before earnings are announced to the public. However, CPIEPIN is also higher after the

actual earnings become public information.

Panels B and C of Fig. 5 shed light on the features of the data that produce the observed

pattern in the average CPIEPIN in Panel A. Panel B shows the average predictions from OLS

regressions of CPIEPIN on order imbalance and absolute order imbalance squared across all

of the stocks in the event study sample. The solid line indicates that order imbalance explains

only a small fraction of the variation in CPIEPIN within the event window. Panel C shows

the average predictions from regressions of CPIEPIN on turnover and turnover squared.

The solid line indicates that the variation in CPIEPIN around earnings announcements is
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explained almost entirely by turnover. The intuition follows directly from the results in

Section 2.2, which shows that CPIEPIN is mechanically driven by turnover increases. The

higher post-event turnover levels are enough to keep CPIEPIN above its pre-event mean for

a substantial period.

To formalize the intuition behind Panels B and C of Fig. 5, we run regressions similar

to those in Table 3 using our event sample. Specifically, we run regressions of CPIEPIN on

absolute value of order imbalance and its squared term during the event window [-20,+20].

The results of these regressions (see Table 4 ) indicate that absolute order imbalance explains

little of the variation in CPIEPIN in the event window while turnover explains most of the

variation in CPIEPIN . In fact, Table 4 shows that for the median stock, adding turnover

and turnover squared to these regressions nearly quadruples the R2s.

The event study results suggest that the variation in PIN around events documented in

the literature is partially related to variation in ↵ that is mechanically driven by turnover,

rather than order imbalance. For instance, Benos and Jochec (2007) show that PIN increases

after earnings announcements, while Aktas, de Bodt, Declerck, and Van Oppens (2007) show

that PIN increases after M&A target announcements due to increases in both µ and ↵.

Therefore, our evidence suggests that these PIN results are at least partially explained by

the fact that the PIN model attributes increases in turnover to private information.

Turnover around earnings announcement can vary for many reasons unrelated to the

arrival of private information. Traditionally the literature has attributed high turnover af-

ter announcements to disagreement (e.g. Bamber, Barron, and Stevens (2011)). Karpo↵

(1986) suggests that high turnover after earnings announcements may also be due to diver-

gent prior expectations, while Frazzini and Lamont (2007) attributes high turnover to small

investors’ lack of attention. None of these studies suggest that the higher turnover around

announcements is necessarily the result of increased informed trade, per se. Even the PIN

model suggests that once we control for order imbalance, turnover should have little power

to identify informed trade.

Another important implication of these results for the literature is that event studies

based on daily measures of private information, like CPIEPIN (e.g. Easley, Engle, O’Hara,

and Wu (2008) and Brennan, Huh, and Subrahmanyam (2015)) can also be misleading. To

19



see this point consider the results in Panel A of Fig. 5. It may appear at first glance that

the results in Panel A of Fig. 5 suggest that the PIN model identifies private information in

a sensible way since CPIEPIN increases dramatically from 55% before the announcement

to over 75% on the day of the announcement then falls after the announcement, albeit over

a period of weeks. However, the decomposition of the CPIEs in Panels B and C of Fig. 5

points to a di↵erent interpretation, namely that the dramatic increase in CPIE around the

event is actually result of variation in turnover, which may be unrelated to the arrival of

private information as we point out above.

3 Does order flow alone reveal private information?

The previous section shows that the PIN model mis-identifies private information arrival from

increases in turnover. However, it could be that net order flow itself is such a poor indicator

of private information that no model based on order flow alone is capable of identifying

informed trade (e.g. Back, Crotty, and Li (2014) and Kim and Stoll (2014)). This section

gauges the extent to which a model of order flows and price responses generates better

inferences about the arrival of informed trade than a model based on order flow alone. To

do so, we first propose an extension of the PIN model (the EPIN model) that removes the

mechanical conflation of turnover and arrival of private information that plagues the PIN

model. We then compare the OWR model, which infers the arrival of private information

from returns and order flow, with the EPIN model, which is solely based on order flow.

Section 3.1 presents the EPIN model. Section 3.2 describes the OWR model and Section 3.3

presents the results of a horse race between the OWR and the EPIN models.

3.1 Extending the PIN model

Our results in Sections 2.2 and 2.3 show that the PIN model naively identifies information

events from turnover. This happens because of two limitations of the PIN model. First,

under the PIN model, increases in expected turnover can only come about through the

arrival of private information (see Equation 1). Second, the PIN model assumes that order

flow is distributed as a mixture of three bivariate Poisson random variables (i.e. the three

clusters in Panels A and B of Fig. 3). This assumption is too restrictive to accommodate
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the high level and volatility of turnover that we observe, especially in the later part of the

sample. In this section, we propose an extension of the PIN model to fix the issues with the

PIN model.

Before doing so, it is useful to formalize why the model fails in the way that we discuss

above. Panel A of Fig. 6 displays a reparameterization of the PIN model in terms of three

new parameters. First, the ratio of the intensity of uninformed buyer initiated trades to the

intensity of the total number of uninformed trades (✓ = ✏B/(✏B + ✏S)). Second, the ratio

of the expected number of informed to uninformed trades on days where there is private

information (⌘ = µ/(✏B + ✏S) ). Third, the overall intensity of the number of buys plus sells

(�). Specifically, recall that Equation 1 shows that � is function of the arrival of private

information, represented by the indicator Ii,t such that on days without private information

�(0) = ✏B + ✏S and, on days with private information, �(1) = ✏B + ✏S +µ. The bottom node

of Panel A in Fig. 6 shows that, on days without private information, the intensity of buyer

initiated trades is ✓⇥ �(0), while the intensity of seller initiated trades is (1� ✓)⇥ �(0). On

negative private information days (the central node of Panel A in Fig. 6) the ratio of the

intensity of buys to the intensity of total trades drops to ✓/(1 + ⌘). Since buy orders are all

uninformed and some sell orders are informed, the expected number of buys relative to the

expected number of trades is smaller. Finally, on positive information days (the top node of

Panel A in Fig. 6) the ratio of sells to the intensity of total trades drops to (1� ✓)/(1 + ⌘).

Since sell orders are all uninformed and some buy orders are informed, the expected number

of sells relative to the expected number of trades is smaller. Therefore, Panel A of Fig. 6 is a

re-parameterization of the PIN model in Fig. 1 using the parameters �(0), ⌘, and ✓ instead

of ✏B, ✏S, and µ.

Two limitations of the PIN model are immediately clear from the parameterization in

Panel A of Fig. 6. First, increases in � can only come about through the arrival of private

information. That is, � is function of information arrival (It). Second, the PIN model does

not allow for enough variability in � to accommodate the high level and volatility of turnover

that we observe, especially in the later part of the sample. We resolve the limitations of the

PIN model while keeping its information structure with an extension of the PIN model

that does two things. First, we draw �t independently of the arrival of private information.
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Second, we focus on the fraction of trades represented by buys and sells rather than on the

absolute amounts of buys and sells following the re-parameterization of the PIN model in

Panel A of Fig. 6.

Panel B of Fig. 6 presents the tree structure for the Extended PIN model (EPIN). The

EPIN model retains the microstructure intuition of the original PIN model, however, it

focuses on the ratios of the expected number of buys and sells to the expected number of

trades rather than on the absolute numbers of buys and sells.

Specifically, the EPIN model in Panel B of Fig. 6 draws �t from a Gamma(r, p/(1� p))

distribution with shape parameter r and scale parameter p/(1�p). The fact that �t is drawn

from a Gamma distribution makes the model particularly tractable since the mixture of the

Poisson and Gamma distributions is the well-known Negative Binomial distribution (see

Casella and Berger (2002)). In the EPIN model, the number of trades (B+S) is distributed

as Negative Binomial (see Appendix D for proof), which dramatically simplifies the nu-

merical estimation of the model. In the maximum likelihood estimation the order intensity

(�) parameters r and p can be estimated in a first stage, independently of the remaining

information structure parameters which can be estimated in a second stage. CPIEEPIN

is calculated in the same way as in the PIN model. Moreover, if we condition down with

respect to the data, CPIEEPIN reduces to the model’s unconditional probability of infor-

mation events (↵). See Appendix D for a detailed discussion of the model, the associated

EPIN measure, the likelihood function, and the CPIEEPIN calculation.

To illustrate how the EPIN model works, we present a stylized example of the EPIN

in Fig. 7. Analogous to the PIN model plot in Fig. 3, we plot simulated and real order

flow data for Exxon-Mobil during 1993 and 2012, with buys on the horizontal axis and sells

on the vertical axis. Panels A and B of Fig. 7 illustrate the central intuition behind the

EPIN model. The simulated data comprise three types of days, which create three distinct

clusters. Two of the clusters are made up of days characterized by a high proportion of

imbalanced trades (large |B�S|
B+S

), with a large number of sells (buys) and relatively few buys

(sells). The third group of days has a low proportion of imbalanced trades–these days have

no private information arrival and are clustered around the dashed line in the center of the

scatter plots.
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The EPIN model implies that days with information events are the ones in which the

proportion of imbalanced trades is large. An econometrician using the EPIN model, moving

along the dashed line in Panels A and B, would observe that days with above average

turnover–days the PIN model classifies as information events–are no longer classified as

such, because higher turnover is driven by a large draw of the parameter �t under the EPIN

model. Instead, the EPIN model identifies private information when moving away from the

dashed line–when the proportion of imbalanced trades is high.

Panels C and D plot CPIEEPIN as function of turnover. As opposed to the analogous

plot of the PIN model in Fig. 3, Panels C and D do not indicate any relation between

turnover and CPIEEPIN .15 Although the EPIN model is not a perfect description of the

order flow data, it manages to fix the problem of the PIN model which mechanically identifies

private information arrival from turnover.

Table 5 contains summary statistics for the parameter estimates of the EPIN model.

Table 5 also contains summary statistics of the cross-sectional sample means and standard

deviations of CPIEEPIN . We see that the mean CPIEEPIN behaves exactly like ↵. We also

estimate the EPIN model for every stock in our sample in the period t 2 [�312,�60] before

earnings announcements and opportunistic insider trades. These parameter estimates are

used to compute the CPIEEPIN in Section 3.3. The summary statistics of the parameter

estimates for the event studies are qualitatively similar to those in Table 5.

3.2 The OWR model

Odders-White and Ready (2008) extend Kyle (1985) by allowing for days with information

events and days without information events. Private information arrives before the opening

of the trading day with probability ↵. On days when private information arrives, the model

assumes that the information is publically revealed after the close of trade. The OWR model

identifies the arrival of private information through order flow imbalance, ye, the intraday

price response to order imbalance, rd, and through subsequent overnight price changes, ro.16

15Internet Appendix D shows the results of regressions of CPIEEPIN on the proportion of imbalanced
trades and turnover. These regressions are analogous to those that we performed with the PIN model in
Table 3. The results of these regressions indicate that the EPIN model does not conflate turnover with the
arrival of private information.

16We suppress the t subscript for ease of exposition.
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The vector (ye, rd, ro) is assumed to be multivariate normal with mean zero and a covariance

matrix that di↵ers between information days and non-information days.17

Fig. 8 shows the time line of the model. The intuition behind the OWR model is

that the market maker updates prices in response to order flow because the order flow could

reflect an information event. However, the subsequent price pattern is di↵erent depending on

whether there actually was an information event or not. If an information event occurs, the

overnight price response reflects a continuation of the market makers’ intraday reaction. If

no information event occurs, the overnight price response reverses the market makers’ initial

price reaction. Therefore, an econometrician can make inferences about the probability of an

information event in the OWR model because the covariance matrix of the three variables

(ye, rd, ro) di↵ers between days when private information arrives and days when only public

information is available.18

To see how the covariance matrix of (ye, rd, ro) di↵ers between information and non-

information days, consider first the covariance of the intraday and overnight returns, cov(ro, rd).

This covariance is positive for information events, reflecting the fact that the information

event is not completely captured in prices during the day and the revelation of the private

information means that the overnight return continues the partial intraday price reaction.

In contrast, cov(ro, rd) is negative in the absence of an information event since the market

marker’s reaction to the noise trade during the day is reversed when she learns that there

was no private signal.

The other moments in the covariance matrix of (ye, rd, ro) are also a↵ected by the arrival

of private information. If no information event occurs, then V ar(ye) is composed of only

the variances of the uninformed order flow and the noise in the data. However, if an event

occurs, V ar(ye) increases because the order flow reflects at least some informed trading.

Similarly, V ar(rd) is higher for an information event, because it reflects the market maker’s

partial reaction to the day’s increased order flow. Since the private signal is revealed after

17We follow Odders-White and Ready and remove systematic e↵ects from returns to obtain measures of
unexpected overnight and intraday returns (ro and rd). See Section 1 and Internet Appendix B for a detailed
description of how we compute ye, ro and rd.

18Unlike the market maker who must update prices before observing the overnight revelation of informa-
tion, the econometrician in the OWR model can make inferences about the arrival of private information
after viewing the overnight price response.
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trading closes, V ar(ro) also increases in the wake of an information event, as it reflects

the remainder of the market maker’s partial reaction to the informed trade component in

order flow. Likewise, information events make cov(ye, rd) and cov(ye, ro) rise. The higher

covariance between order flow and intraday returns occurs because, in an information event,

both order flow and the intraday return (partially) reflect the impact of informed trading.

Along these same lines, because the market maker cannot separate the informed from the

uninformed order flow, she is unable to fully adjust the price during the day to reflect the

informed trader’s private signal. However, since the private signal is publically revealed and

fully reflected in prices after the close, cov(ye, ro) is higher during an information event.

In contrast to the PIN model, the OWR model does not contain a direct analog to the

probability of informed trading (PIN). To understand this result, note that the probability

of informed trade in the PIN and EPIN models is given by the ratio of the expected number

of informed trades to the expected total number of trades on a given day. Since the OWR

model employs only the di↵erence between buys and sells, it does not make assumptions

about the distribution of number of trades. Thus, the OWR is mute regarding the ratio of

the expected number of informed trades to expected number of trades. This may appear

to be a limitation of the OWR model, but this is actually an advantage because it allows

the OWR model to disentangle variations in turnover from the arrival of informed trading,

much like the EPIN model.

Even though the OWR model does not have a measure analogous to the PIN measure,

the OWR model admits other useful measures of private information. For instance, the

OWR model has a CPIEOWR which reduces to the model’s unconditional probability of

information events (↵) if we condition down with respect to the data. Moreover, Odders-

White and Ready (2008) motivate their model as a tool to separate the expected liquidity

provider losses due to trading with informed traders into the frequency of private information

arrival and the expected magnitude of the private information. Hence, the OWR allows for

the construction of private information measures that are based on both dimensions. The

PIN and EPIN models, on the other hand, focus only on the frequency of information arrival

and are silent with respect to the expected magnitude of the private information. Hence,

our comparison of the EPIN and OWR models with CPIEEPIN and CPIEOWR focuses
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on the dimension of private information that both models have in common, namely the

frequency of information arrival. The fact that we are using CPIEs to compare the models

does not imply that we are taking the position that frequency measures are the only private

information metrics that are worthy of consideration.

As with the PIN and EPIN models, we estimate the OWR model numerically via max-

imum likelihood. Table 6 contains summary statistics for the parameter estimates of the

OWR model. Table 6 also contains summary statistics of the cross-sectional sample means

and standard deviations of CPIEOWR. As in the PIN and EPIN models, we see that the

mean CPIEOWR behaves exactly like ↵ in the OWR model. The estimated OWR ↵ param-

eters are in general higher than those in Odders-White and Ready (2008). This is due to the

fact that our definition of ye is di↵erent from that in Odders-White and Ready (2008) (see

the discussion in Section 1 above).19 Fig. 9 plots the time series of the estimated OWR ↵. In

contrast to the PIN ↵, the OWR ↵ is decreasing over time. This pattern may indicate that

private information arrival is less likely later in our sample. While interesting, understand-

ing this pattern is outside the scope of this paper and we leave this investigation for future

research. We also estimate the OWR model for each stock i in the period t 2 [�312,�60]

before earnings announcements and opportunistic insider trades. These parameter estimates

are used to compute the CPIEs in Sections 3.3.1 and 3.3.2. The summary statistics of

the parameter estimates for the event studies are qualitatively similar to those in Table 6.

Internet Appendix E has a detailed description of model, its likelihood function, and the

CPIEOWR calculation. Appendix E also displays the results of regressions of CPIEOWR

similar to those that we perform with CPIEPIN in Section 2.2. These regressions indicate

that the OWR model identifies the arrival of private information in a way consistent with

its theory.

3.3 A horse race between the EPIN and OWR models

A fundamental problem in the literature related to testing and proposing measures of private

information is the lack of cleanly identifiable periods in which private information is present in

19In fact, we get ↵ estimates close to those reported in Odders-White and Ready (2008) if we define ye in
the same way that they do.
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the market. To address this issue, we use three di↵erent methods to analyze the performance

of the OWR and EPIN models. In Section 3.3.1 we analyze how CPIEOWR and CPIEEPIN

vary around earnings announcements. The assumption underlying this test is that private

information arrival is more likely before than after the announcement. In Section 3.3.2 we

analyze how CPIEOWR and CPIEEPIN vary around insider trading events. In Section 3.3.3

we analyze how CPIEOWR and CPIEEPIN are related to return autocorrelations.

Each of these three methods has its own unique limitations. For instance, it is possible

that, for some reason, private information is more prevalent after important announcements

than before. Other critiques could be levied against the other two methods. However, if all of

these methods point to the same conclusions, it seems unlikely that our overall interpretation

would be biased due to the limitations of any specific method.

3.3.1 Information event probabilities under the EPIN and OWR models

Panel A of Fig. 10 illustrates the average CPIEEPIN in event time for our sample of earn-

ings announcements. In contrast to the PIN model, the probability of an information event

decreases from around 51% 20 days before the announcement and drops on the announce-

ment date to around 46%. This pattern is not consistent with informed traders acting on

private information before the announcement. Panel B of Fig. 10 illustrates the average

CPIEOWR in event time for our sample of earnings announcements. Similar to the PIN

model, the probability of an information event increases from around 40% 20 days before

the announcement and peaks on the announcement date at around 45%. Panel B indicates

that the CPIEOWR is far outside of two standard deviations from its mean (estimated be-

tween t 2 [�40,�21]) on the announcement date t = 0. This pattern is consistent with the

timing of the OWR model where informed traders act on private information during the day

before the public announcement which occurs overnight (t 2 [0, 1)). Unlike the PIN model,

the CPIEOWR drops back to its pre-event mean within a few days after the announcement.

This is consistent with the intuition that there is more scope for informed trading before the

announcement than after.

What causes the EPIN results to be so di↵erent from the PIN results above? Fig. 11 sheds

light on this question. Panel A of Fig. 11, shows the actual CPIEEPIN along with predicted
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values from a regression of CPIEEPIN on the proportion of imbalanced trades
� |B�S|

B+S

�
and its

square. The results indicate that CPIEEPIN drops because the imbalance is small relative to

the absolute amount of trade on the announcement day. This is consistent with the results in

Easley, Engle, O’Hara, and Wu (2008), who show that in their sample of 834 announcements

that the average proportion of imbalanced trades decreases on earnings announcement days.

The PIN model interprets the increase in turnover as indicative of the arrival of private

information, but the EPIN model, on the other hand, uses the information in the proportion

of imbalanced trades to draw the opposite conclusion. Panel B provides support for this

notion by showing that the CPIEEPIN does not respond to increases in turnover. Panel

B shows the predicted CPIEEPIN based on a regression of CPIEEPIN on |B�S|
B+S

and its

square. The results indicate that, consistent with the motivation for the extended model,

CPIEEPIN responds to the proportion of imbalanced trades and not turnover.

As we saw in Section 3.2, the OWR model identifies private information from the co-

variance matrix of the three variables in the model (ye,i,t, ro,i,t, rd,i,t). Therefore, to analyze

how the OWR model identifies private information around earnings announcements, we de-

compose CPIEOWR on to the squared and interaction terms of (ye,i,t, ro,i,t, rd,i,t). Panels

A–F of Fig. 12 show that the majority of the variation in measured private information

(CPIEOWR) comes from intraday returns squared (Panel B) and the interaction between

the intraday and overnight returns (Panel F). Order imbalance squared (Panel A) provides

no explanatory power, although the interaction between the order imbalance and returns

(Panels D and E) does have some impact.

Our results suggest that order flow, however well modeled, is insu�cient to be the sole

source of inferences about private information arrival. Under the assumption that there is

more informed trade before rather than after earnings announcements, our findings suggest

that the OWRmodel identifies private information in a sensible way while the EPIN does not.

Even though the magnitude of the increase in CPIEOWR around the event date may be con-

sidered small, CPIEOWR increases before the event day while CPIEEPIN counter-intuitively

decreases. Since both models use order flow to identify private information, the marked dif-

ference in the results highlights the importance of including the price response mechanism.

The use of returns, particularly intraday returns, allows the OWR model to reach a di↵erent
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and more economically sensible conclusion. Moreover, the fact that order imbalance alone

explains very little of the variation in CPIEOWR around earnings announcements also em-

phasizes the relatively low contribution of order flow relative to returns in identifying private

information. Our results therefore provide empirical support for the proposition in Back,

Crotty, and Li (2014) and in Kim and Stoll (2014) that researchers cannot use order flow

alone to successfully identify periods of informed trade.

3.3.2 CPIEEPIN and CPIEOWR around insider trading

In this section we investigate whether the OWR and EPIN models are capable of identifying

opportunistic insider trades using the insider trade classification scheme developed in Cohen,

Malloy, and Pomorski (2012).20 Cohen, Malloy, and Pomorski (2012) show that a long-short

portfolio that exploits the trades of opportunistic traders (opportunistic buys minus op-

portunistic sells) earns value-weighted abnormal returns of 82 basis points per month (9.8

percent annualized, t-statistic=2.15). They also show that the trades of opportunistic insid-

ers show significant predictive power for future news about the firm, and that the fraction of

traders who are opportunistic in a given month is negatively related to the number of recent

news releases by the SEC regarding illegal insider trading cases. Their results are all consis-

tent with opportunistic insider trades, as opposed to routine insider trades, being based on

private information. Opportunistic insider trades therefore, provide a convenient laboratory

to examine the models’ ability to detect the arrival of actionable private information.

Panel A (B) of Fig. 13 presents the average CPIEEPIN (CPIEOWR) in event time

for our sample of opportunistic insider trades. There is no clear pattern in the CPIEEPIN

indicating the arrival of private information before opportunistic insider trades, though there

is an increase in CPIEEPIN on the day of opportunistic insider trades.

In contrast, Panel B shows that the CPIEOWR identifies the arrival of private information

in the days leading up to an opportunistic insider trade. Beginning at t = �4, the CPIEOWR

is more than two standard deviations higher than the mean estimated between t 2 [�40, 21].

However, CPIEOWR begins to drift strongly upward and very nearly crosses the two standard

deviation bound as early as day t = �10. Strikingly, at t = 1, immediately after the trade,

20See Section 1 for a further discussion of the classification of insider trades as opportunistic.
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CPIEOWR drops precipitously back to average levels. We interpret this as strong evidence

that the OWR model’s use of both order flow and returns is successful in uncovering informed

trade.

Taken together, the insider trading event study evidence further supports the claim that

order flows alone may be insu�cient to identify private information. CPIEEPIN , which

varies based only on changes in order imbalances, is unable to clearly detect the imminent

arrival of insider trades. CPIEOWR, on the other hand, is able to predict insider trading

based on small variations in intraday and overnight returns.

3.3.3 Are CPIEEPIN and CPIEOWR related to return continuation?

The market microstructure literature has long held that price changes related to informed

trades should not be subsequently reversed while non-information related price changes (e.g.

dealer inventory control, price pressure, price discreteness etc.) are transient (e.g. Hasbrouck

(1988, 1991a,b)). In this section, we investigate whether CPIEEPIN and CPIEOWR are

associated with subsequent return reversals. In particular, we examine the relation between

CPIEs and return autocorrelations. The intuition is that if a model’s CPIE on day t

actually reflects a high probability of informed trade then we expect that the return on day

t will be continued over the subsequent day as the information gradually becomes public

and gets fully impounded in prices. To capture this idea we model return autocorrelations

as linear functions of CPIE. Specifically, we consider the following regressions: ri,t+1 =

↵ + �OWR,1ri,t + �OWR,2CPIEOWR,t + �OWR,3(ri,t ⇥ CPIEOWR,t) + "i,t+1, and ri,t+1 = ↵ +

�EPIN,1ri,t + �EPIN,2CPIEEPIN,t + �EPIN,3(ri,t ⇥ CPIEEPIN,t) + "i,t+1.

In the above regressions, ri,t is the open-to-open, risk adjusted return (ri,d,t + ri,o,t) on

day t. Thus, there is no overlap between the intraday and overnight returns that are used

to compute CPIEOWR,i,t on day t and the return on day t+ 1. The coe�cients �OWR,2 and

�EPIN,2 reflect the impact of the model’s CPIE on the correlation between the return on

day t and the return the next trading day. We estimate the regressions above using a panel

regression approach including firm and year fixed e↵ects with standard errors clustered by

firm and year. Table 7 reports the coe�cient estimates and t-statistics for these regressions.

The results in Table 7 show that the estimates for both �OWR,2 and �EPIN,2 are positive
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and significant, indicating that both CPIEEPIN and CPIEOWR are associated with future

return continuation. To see this note that both regressions show a tendency of daily returns to

reverse because the coe�cients on lagged returns in both regressions are negative. However,

a one standard deviation shock to CPIEOWR is associated with a 0.02 (0.08⇥ 0.25) decline

in the subsequent reversal, while a one standard deviation shock to CPIEEPIN is associated

with only a 0.003 (0.006 ⇥ 0.49) drop in the subsequent reversal. Thus, while the point

estimates for both the OWR and EPIN models suggest that CPIEEPIN and CPIEOWR

capture information that has a persistent impact on prices, the e↵ect is ten times stronger

with the OWR CPIE. We view this as further evidence that including the price response

mechanism allows researchers to make stronger inferences about private information arrival.

4 Conclusion

The PIN measure, developed in the seminal work of Easley and O’Hara (1987), Easley,

Kiefer, O’Hara, and Paperman (1996), and Easley, Kiefer, and O’Hara (1997), is arguably

the most widely used measure of information asymmetry in the accounting, corporate finance

and asset pricing literature today. Recent work however suggests that PIN fails to capture

private information (e.g. Aktas, de Bodt, Declerck, and Van Oppens (2007), Benos and

Jochec (2007), and Collin-Dufresne and Fos (2014a)). This paper analyzes why the model

might incorrectly identify informed trade.

Our findings indicate that the PIN model fits the data so poorly that it mechanically

groups all sources of variation in turnover (e.g. disagreement, calendar e↵ects, portfolio

rebalancing, taxation, etc.) under the umbrella of private information arrival. This is at

odds with a vast literature that suggests turnover varies for many reasons unrelated to the

arrival of private information. This failure of the PIN model is particularly strong after

the increase in turnover in the early 2000s. In fact, after 2002 for the median stock in our

sample, the PIN model is essentially equivalent to a näıve model that assigns a probability

of one to the arrival of private information on any day where turnover is above average

and zero probability to the arrival of private information on any other day. These findings

suggest some important insights for future research that tests, constructs, or uses proxies for

informed trade.
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Our results suggest that event study based tests of private information proxies (e.g.

Easley, Engle, O’Hara, and Wu (2008) and Brennan, Huh, and Subrahmanyam (2015)) can

be misleading if one fails to account for the fact that patterns in private information measures

may simply reflect event-related patterns in turnover that have nothing to do with private

information arrival. For instance, Brennan, Huh, and Subrahmanyam (2015) interpret the

fact that their CPIEPIN measures are higher after earnings announcements than before

as evidence of informed trading. However, we show that CPIEPIN is mechanically related

to turnover. This suggests that the findings in Brennan, Huh, and Subrahmanyam (2015)

can simply be attributed to the fact that turnover is typically much higher after earnings

announcements.

Our findings also suggest that future research aimed at building measures of informed

trade should focus on the price response mechanism in addition to net order because order

flow, however well modeled, appears insu�cient to identify private information. Specifically,

we use three di↵erent methods to compare the OWR model, which infers the arrival of

private information from returns and order flow, with an extension of the PIN model (the

EPIN model), which is solely based on order flow but corrects the PIN model’s mechani-

cal association of private information arrival with variation in turnover. The OWR model

performs better than the EPIN model in all three tests. First, the EPIN model actually

predicts a decrease in private information arrival before earnings announcements while the

OWR model captures a pattern of increasing private information arrival prior to the an-

nouncement and a marked decrease after the announcement. Second, CPIEOWR predicts

periods of opportunistic insider trading and decreases dramatically immediately following

the insider trades, while CPIEEPIN displays no such clear pattern around these events.

Lastly, the relation between CPIEOWR and future return continuation is ten times larger

than that of the CPIEEPIN .

Our findings also suggest that future research in corporate finance, accounting, or asset

pricing that uses information asymmetry measures should consider using proxies for private

information based on the OWR model, for instance CPIEOWR or its ↵, instead of using

proxies based on the PIN model (e.g. PIN).
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Table 1: Summary Statistics. This table summarizes the full sample and event
day (t=0) returns, order imbalance, and number of buys and sells. We compute
intraday and overnight returns as well as daily buys and sells for stocks between 1993
and 2012 using data from the NYSE TAQ database. Following Odders-White and
Ready (2008), we compute the intraday return, rd, at time t as the volume-weighted
average price at t (VWAP) minus the opening quote midpoint at t plus dividends
at time t, all divided by the opening quote midpoint at time t. We compute the
overnight return, ro, at t as the opening quote midpoint at t + 1 minus the VWAP
at t, all divided by the opening quote midpoint at t. We compute ye as the daily
total volume of buys minus total volume of sells, divided by the total volume. For
the PIN and EPIN models, we use the daily total number of buys and sells. Our
sample of earnings announcements includes all CRSP/COMPUSTAT firms listed
in NYSE between 1995–2009 for which we have exact timestamps collected from
press releases in Factiva which fall within a [-1,0] window relative to COMPUSTAT
earnings announcement dates. Opportunistic insider trades are defined as in Cohen,
Malloy, and Pomorski (2011).

(a) Full Sample

N Mean Std Q1 Median Q3

ye 5,286,191 2.766% 31.259% -10.433% 3.282% 18.996%
rd 5,286,191 -0.004% 1.500% -0.707% -0.024% 0.680%
ro 5,286,191 0.003% 1.297% -0.566% -0.024% 0.525%
# Buys 5,286,191 1,876 6,917 37 220 1,128
# Sells 5,286,191 1,843 6,894 36 194 1,033

(b) Earnings Announcements

N Mean Std Q1 Median Q3

ye 21,979 5.099% 22.122% -4.787% 4.373% 16.400%
rd 21,979 0.002% 2.424% -1.252% -0.004% 1.271%
ro 21,979 0.075% 2.313% -1.042% 0.013% 1.153%
# Buys 21,979 4,572 13,491 223 956 3,421
# Sells 21,979 4,465 13,546 191 831 3,165

(c) Opportunistic Insider Trades

N Mean Std Q1 Median Q3

ye 32,676 4.980% 20.425% -5.106% 3.874% 15.353%
rd 32,676 0.151% 1.566% -0.632% 0.086% 0.865%
ro 32,676 0.056% 1.247% -0.467% 0.020% 0.528%
# Buys 32,676 3,852 10,645 354 1,129 3,478
# Sells 32,676 3,787 10,554 300 996 3,303



Table 2: PIN Parameter Estimates. This table summarizes parameter estimates of the PIN

model for 21,206 PERMNO-Year samples from 1993 to 2012. ↵ represents the average unconditional

probability of an information event at the daily level. � represents the probability of good news,

and 1� � represents the probability of bad news. ✏B and ✏S represent the expected number of daily

buys and sells given no private information. µ represents the expected additional order flows given

an information event. CPIE and Std(CPIE) are the PERMNO-Year mean and standard deviation

of CPIEPIN .

N Mean Std Q1 Median Q3

↵ 21,206 0.372 0.122 0.291 0.375 0.445

� 21,206 0.607 0.209 0.484 0.625 0.762

✏B 21,206 1,625 5,388 33 193 1,039

✏S 21,206 1,596 5,369 35 186 956

µ 21,206 312 593 43 160 314

CPIE 21,206 0.382 0.135 0.293 0.379 0.449

Std(CPIE) 21,206 0.451 0.052 0.427 0.470 0.490



Table 3: PIN Model Regressions. This table reports real and simulated regressions of the CPIEPIN on
absolute order imbalance (|B � S|), and order imbalance squared (|B � S|2). In Panel A, we simulate 1,000
instances of the PIN model for each PERMNO-Year in our sample (1993–2012) and report mean standardized
estimates for the median stock, along with 5%, 50%, and 95% values of the R2 (R2

inc.
) values. We compute

the incremental R2
inc.

as the R2 attributed to turn and turn2 in an extended regression model. In Panel B,
we report standardized estimates for the median stock using real data, along with the median R2 and R2

inc.

values, and tests of the null hypothesis that the observed relation between CPIEPIN and turn is consistent
with the PIN model. The p-value of is the mean probability under the null of observing an R2

inc.
at least as

large as what is observed in the real data. The % Rej. is the fraction of stocks for which we reject the null
hypothesis at the 5% level.

(a) Simulated Data

� t R2 R2
inc.

|B � S| |B � S|2 |B � S| |B � S|2 5% 50% 95% 5% 50% 95%

1993 0.437 -0.079 (10.31) (-1.80) 71.13% 76.09% 80.38% 7.17% 10.57% 15.25%
1994 0.422 -0.072 (9.63) (-1.67) 67.49% 73.26% 78.11% 9.39% 13.47% 18.55%
1995 0.410 -0.058 (9.68) (-1.36) 70.32% 75.39% 79.85% 7.64% 11.39% 16.02%
1996 0.432 -0.085 (9.89) (-1.90) 69.02% 74.28% 78.87% 8.32% 12.17% 16.97%
1997 0.450 -0.089 (10.30) (-1.98) 71.99% 76.93% 81.12% 7.36% 10.76% 14.79%
1998 0.482 -0.104 (10.79) (-2.36) 74.32% 78.71% 82.46% 6.65% 9.53% 13.30%
1999 0.484 -0.112 (11.03) (-2.47) 75.62% 79.96% 83.46% 6.49% 9.36% 12.92%
2000 0.529 -0.137 (11.88) (-3.00) 79.78% 83.36% 86.15% 4.98% 7.47% 10.45%
2001 0.638 -0.217 (13.97) (-4.61) 83.34% 86.13% 88.57% 4.17% 6.00% 8.35%
2002 0.695 -0.260 (14.11) (-5.30) 82.61% 85.53% 88.06% 4.83% 6.92% 9.54%
2003 0.665 -0.244 (12.38) (-4.52) 78.88% 82.36% 85.36% 7.90% 10.56% 13.79%
2004 0.650 -0.223 (11.49) (-4.16) 77.84% 81.38% 84.59% 8.92% 11.67% 15.03%
2005 0.658 -0.220 (12.59) (-4.46) 80.47% 83.59% 86.45% 7.69% 10.09% 12.95%
2006 0.650 -0.221 (11.96) (-4.35) 80.31% 83.36% 86.18% 7.76% 10.29% 13.50%
2007 0.632 -0.222 (9.40) (-4.07) 79.72% 83.35% 86.15% 8.53% 10.93% 14.05%
2008 0.666 -0.235 (12.29) (-4.83) 82.44% 85.25% 88.00% 6.83% 9.15% 11.78%
2009 0.709 -0.269 (14.37) (-5.70) 84.29% 86.87% 89.20% 6.22% 8.28% 10.57%
2010 0.704 -0.261 (14.60) (-5.68) 84.99% 87.41% 89.64% 5.66% 7.55% 9.89%
2011 0.671 -0.234 (14.13) (-5.21) 85.91% 88.25% 90.21% 5.34% 7.28% 9.39%
2012 0.693 -0.251 (14.92) (-5.62) 85.68% 87.98% 90.34% 5.22% 7.22% 9.50%



Table 3: PIN Model Regressions. Continued.

(b) Real Data

� t R2 R2
inc.

|B � S| |B � S|2 |B � S| |B � S|2 50% 50% p-value % Rej.

1993 0.300 -0.073 (5.98) (-1.43) 35.76% 36.20% 2.57% 94.07%
1994 0.264 -0.047 (5.28) (-0.92) 32.82% 40.02% 3.36% 92.17%
1995 0.280 -0.061 (5.77) (-1.29) 34.20% 36.97% 5.05% 89.29%
1996 0.277 -0.065 (5.69) (-1.28) 30.92% 38.97% 3.85% 92.30%
1997 0.283 -0.073 (5.67) (-1.36) 30.80% 38.86% 3.54% 92.99%
1998 0.274 -0.059 (5.26) (-1.09) 30.12% 39.58% 3.54% 93.67%
1999 0.280 -0.059 (5.21) (-1.08) 29.05% 39.46% 3.29% 94.29%
2000 0.300 -0.079 (5.48) (-1.39) 29.99% 39.08% 2.59% 95.63%
2001 0.339 -0.111 (5.67) (-1.87) 29.44% 39.39% 3.53% 94.76%
2002 0.279 -0.058 (4.09) (-0.85) 23.05% 44.28% 5.59% 91.48%
2003 0.247 -0.032 (3.57) (-0.47) 21.97% 41.86% 9.55% 84.87%
2004 0.211 -0.005 (3.14) (-0.08) 19.55% 45.22% 8.78% 86.21%
2005 0.254 -0.053 (3.81) (-0.81) 19.42% 46.29% 9.21% 85.47%
2006 0.251 -0.066 (3.80) (-0.96) 16.95% 48.44% 10.83% 85.30%
2007 0.271 -0.104 (4.01) (-1.57) 14.30% 50.32% 14.04% 82.00%
2008 0.268 -0.111 (4.00) (-1.66) 13.78% 50.97% 11.49% 86.08%
2009 0.280 -0.117 (4.15) (-1.74) 14.59% 49.91% 10.08% 87.58%
2010 0.291 -0.124 (4.39) (-1.82) 15.96% 47.64% 10.62% 87.45%
2011 0.295 -0.131 (4.56) (-2.03) 15.94% 46.60% 11.14% 86.90%
2012 0.319 -0.145 (4.96) (-2.23) 17.56% 45.61% 13.31% 85.12%



Table 4: PIN Regressions Around Earnings Announcements. This table reports regression results
for CPIEPIN around Earnings Announcements. For each announcing firm in our sample we run regressions
of CPIEPIN on absolute order imbalance (|B � S|) and absolute order imbalance squared (|B � S|2) from
[�20,+20] and report median estimates across all the events. We compute the incremental R2

inc. as the increase
in R2 attributed to turn and turn2 in an extended regression model. We report standardized coefficients.

� t R2 R2
inc.

|B � S| |B � S|2 |B � S| |B � S|2 50% 50%

0.143 -0.032 (1.07) (-0.35) 15.42% 44.44%



Table 5: EPIN Parameter Estimates. This table summarizes parameter estimates of the EPIN

model for 21,206 PERMNO-Year samples from 1993 to 2012. ↵ represents the average unconditional

probability of an information event at the daily level. � represents the probability of good news,

and 1� � represents the probability of bad news. The total number of trades in any given day (t) is

drawn from a Poisson distribution with intensity �t, where �t is draw from a Gamma distribution

with shape parameter r and scale parameter p/(1�p). The number of buys on a day with no private

information is draw from a Poisson distribution with intensity ✓⇥�t. On days with negative news,

the number of buys is drawn from a Poisson with intensity ✓/(1 + ⌘)⇥ �t. CPIE and Std(CPIE)

are the PERMNO-Year mean and standard deviation of CPIEEPIN .

N Mean Std Q1 Median Q3

↵ 21,206 0.493 0.088 0.448 0.498 0.543

� 21,206 0.495 0.184 0.372 0.492 0.616

r 21,206 7.210 4.724 4.056 5.976 8.960

p 21,206 0.948 0.080 0.932 0.984 0.997

✓ 21,206 0.515 0.049 0.493 0.514 0.546

⌘ 21,206 0.316 0.242 0.152 0.240 0.413

CPIE 21,206 0.494 0.087 0.449 0.499 0.543

Std(CPIE) 21,206 0.414 0.082 0.367 0.445 0.478



Table 6: OWR Parameter Estimates. This table summarizes parameter estimates of the OWR

model for 21,206 PERMNO-Year samples from 1993 to 2012. ↵ represents the average unconditional

probability of an information event at the daily level. �u represents the standard deviation of the

order imbalance due to uninformed traders, which is observed with normally distributed noise with

variance �2
z
. �i represents the standard deviation of the informed trader’s private signal. �pd and

�po represent the standard deviation of intraday and overnight returns, respectively. CPIE and

Std(CPIE) are the PERMNO-Year mean and standard deviation of CPIEOWR.

N Mean Std Q1 Median Q3

↵ 21,206 0.437 0.257 0.214 0.436 0.639

�u 21,206 0.075 0.068 0.022 0.062 0.109

�z 21,206 0.239 0.143 0.137 0.221 0.332

�i 21,206 0.030 0.286 0.013 0.021 0.027

�pd 21,206 0.010 0.005 0.006 0.009 0.012

�po 21,206 0.006 0.004 0.004 0.006 0.008

CPIE 21,206 0.451 0.258 0.227 0.455 0.656

Std(CPIE) 21,206 0.137 0.047 0.109 0.142 0.171



Table 7: Return Reversals. This table reports regressions of the daily return at time t + 1

on the return, CPIE (CPIEEPIN or CPIEOWR), and the interaction at time t. Returns are

measured from open to open and they are computed as the sum of the intraday (rd) and overnight

returns (ro). We include stock and year fixed effects and cluster standard errors by stock and year.
⇤

indicates statistical significance at the 10% level,
⇤⇤

at the 5%, and
⇤⇤⇤

at the 1% level.

rt+1

OWR EPIN

rt -8.883⇤⇤⇤ -6.955⇤⇤⇤
(-6.88) (-6.91)

CPIEt 0.0136⇤⇤⇤
(4.36)

CPIEt ⇥ rt 2.417⇤⇤⇤
(4.16)

CPIEt 0.00704⇤⇤⇤
(4.03)

CPIEt ⇥ rt 0.271⇤⇤
(2.58)

R2(%) 0.61 0.54
Obs. 5,284,078 5,284,078



Figure 1: PIN Tree. For a given trading day, private information arrives with
probability ↵. When there is no private information, buys and sells are Poisson
with intensity ✏B and ✏S. Private information is good news with probability �. The
expected number of buys (sells) increases by µ in case of good (bad) news.
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Figure 2: PIN Parameters. This figure shows the distribution of yearly ↵, PIN , and µ, ✏B, ✏S parameter
estimates for the PIN model. The solid black line represents the median value, and the dotted lines represent
the 5, 25, 75, and 95 percentiles.
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Figure 3: XOM EO. This figure compares the real and simulated data for XOM in 1993 and 2012 using
the PIN model. In Panels A and B, the real data are marked as +. The real data are shaded according to
the CPIEPIN , with darker markers (+ magenta) representing high and lighter markers (+ cyan) low CPIEs.
High (low) probability states in the simulated data appear as a dark (light) “cloud” of points. The PIN model
has three states: no news, good news, and bad news. All the observations below (above) the dashed lines in
Panels A and B have turnover below (above) the annual mean of daily turnover. Panels C and D plot the
CPIEs for the real data as a function of turnover along with a dashed line indicating the mean turnover.

(a) XOM 1993 (b) XOM 2012

(c) XOM 1993 (d) XOM 2012



Figure 4: Breakdown of the PIN Model. Panel A shows the distribution of the percent of trading days
in a year in which the PIN model identifies private information essentially in the same way as the naive
identification scheme. That is, Panel A plots the percentage of days where the |CPIEPIN � CPIENaive| <
10�10. CPIENaive is one for a given stock-day if turnover is higher than the annual mean of daily turnover,
and is zero otherwise. Panel B shows the distribution of the percent of days where the likelihood, given the
model parameters and observed order flow data is less than 10�10 — days, according to the model, with
near-zero probability of occurring. The solid black line represents the median stock, and the dashed lines
represent the 5, 25, 75, and 95 percentiles.
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Figure 5: Earnings Announcements - PIN. Panel A shows the average CPIEPIN for the PIN model in
event time surrounding earnings announcements. Panels B and C compare the average CPIEPIN with the
CPIEPIN predicted with either the absolute order imbalance (|B � S|) or turnover (turn), respectively. To
obtain the predictions, we run regressions of daily CPIEPIN on |B�S| or turn, and their respective squared
terms.

(a) CPIEPIN

(b) Prediction using |B � S| and |B � S|2 (c) Prediction using turn and turn2



Figure 6: EPIN Tree. Panel A presents a re-parameterization of the PIN model in terms of ratio of the
intensity of uninformed buyer initiated trades to the intensity of the total number of uninformed trades
(✓ = ✏B/(✏B + ✏S)), the ratio of the expected number of informed to uninformed trades on days where there
is private information (⌘ = µ/(✏B + ✏S) ), and the overall intensity of the number of buys plus sells as a
function of the arrival of private information (�(Ii,t)). Panel B presents the EPIN model. The EPIN model
extends the PIN model by allowing the intensity of the number of trades on a given day t (�t) to be drawn
from a Gamma distribution with location and scale parameters r and p/(1�p), respectively. The information
structure remains the same as the one in the PIN model. For a given trading day, private information arrives
with probability ↵. When there is no private information, the number of buys (sells) is distributed as a
Poisson with intensity ✓⇥�t
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Figure 7: XOM EPIN. This figure compares the real and simulated data for XOM in 1993 using the EPIN
model. In Panels A and B, the real data are marked as +. The real data are shaded according to the
CPIEEPIN , with darker markers (+ magenta) representing high and lighter markers (+ cyan) low CPIEs.
The simulated data points are represented by transparent dots, such that high probability states appear as a
dense, dark “cloud” of points, and low probability states appear as a light “cloud” of points. The EPIN model
has three states: no news, good news, and bad news. Panels C and D plot the CPIE values for the real data
as a function of turnover along with a dashed vertical line indicating the annual mean of daily turnover.

(a) XOM 1993 (b) XOM 2012

(c) XOM 1993 (d) XOM 2012



Figure 8: OWR Tree. In the OWR model, prior to markets opening, private information arrives with
probability ↵. Once markets open, investors submit their trades generating order imbalance (ye), and the
intraday return (rd). After markets close, private information becomes public and is reflected in the overnight
return (ro). The variables (ye, rd, ro) are normally distributed with mean zero and covariance ⌃, where ⌃ is
function of the information arrival indicator (I). For instance, when there is no private information, there is
a reversal in the returns (cov(rd, ro) < 0) and when there is private information there is a continuation in the
returns (cov(rd, ro) > 0).
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Figure 9: OWR ↵. This figure shows the distribution of yearly ↵ parameter esti-
mates for the OWR model. The solid black line represents the median value, and
the dashed lines represent the 5, 25, 75, and 95 percentiles.
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Figure 10: Earnings Announcements. Panel A (B) shows the average CPIEEPIN (CPIEOWR) for the
EPIN (OWR) model in event time surrounding earnings announcements.

(a) CPIEEPIN (b) CPIEOWR



Figure 11: Earnings Announcements - EPIN Decomposition. Panels A and B compare the average
CPIEEPIN with the CPIEEPIN predicted using either |B�S|

B+S
or turnover (turn), respectively. To obtain the

predictions, we run regressions of daily CPIEEPIN on |B�S|
B+S

or turn, and their respective squared terms.
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Figure 12: Earnings Announcements - OWR Decomposition. Panels A–F
compare the average CPIEOWR with the CPIEOWR predicted using the squared
and interaction terms of ye, rd, and ro.

(a) Prediction using y2e (b) Prediction using r2
d

(c) Prediction using r2o (d) Prediction using ye ⇥ rd

(e) Prediction using ye ⇥ ro (f) Prediction using rd ⇥ ro



Figure 13: Opportunistic Insider Trades. Panel A (B) shows the average CPIEEPIN (CPIEOWR) for
the EPIN (OWR) model in event time surrounding opportunistic insider trades.

(a) CPIEEPIN
(b) CPIEOWR
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A The DY model

Duarte and Young (2009) propose an extension of the PIN model that accounts for the

positive correlation between buys and sells. We show in this Appendix that the Duarte and

Young (2009) model also performs poorly late in our sample from 1993–2012.

A.1 The DY model

Duarte and Young (2009) extend the PIN model to address some of its shortcomings in

matching the order flow data. Specifically, the authors note that the PIN model implies that

the number of buys and sells are negatively correlated; however, in the data the correlation

between the number of buys and sells is overwhelmingly positive. To correct this problem,

the DY model partially disentangles turnover variation from private information arrival. As

in the PIN model, the DY model posits that at the beginning of each day, informed investors

receive a private signal with probability ↵. If the private signal is positive, buy orders from

the informed traders arrive according to a Poisson distribution with intensity µB. If the

private signal is negative, informed sell orders arrive according to a Poisson distribution with

intensity µS. If the informed traders receive no private signal, they do not trade.

In contrast to the PIN model, the DY model allows for symmetric order flow shocks.

These shocks increase both the number of buyer- and seller-initiated trades but are unre-

lated to private information events. Symmetric order flow shocks can happen for a variety

of reasons, such as disagreement among traders about the interpretation of public news.

Alternatively, liquidity shocks may occur that cause investors holding di↵erent collections of

assets to simultaneously rebalance their portfolios, resulting in increases to both buys and

sells. Regardless of the mechanism, symmetric order flow shocks arrive on any given day

with probability ✓. On days with symmetric order flow shocks, both the number of buyer-

and seller-initiated trades increase by amounts drawn from independent Poisson distribu-

tions with intensity �B or �S, respectively. Buy and sell orders from uninformed traders

arrive according to a Poisson distribution with intensities ✏B (✏B +�B) and ✏S (✏S +�S) on

days without (with) symmetric order flow shocks. Fig. A1 shows the structure of the DY

model.
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Under the DY model, turnover can increase due to either symmetric order flow shocks or

the arrival of private information. To see this, note that the expected number of buys plus

sells on days with positive (negative) information and without symmetric order flow shocks

is ✏B + ✏S +µB (✏B + ✏S +µS); the expected number of trades on days with symmetric order

flow shocks and without private information shocks is ✏B + ✏S +�B +�S, and the expected

number of trades is ✏B + ✏S on days without either.

A.2 Estimation of the DY model

As with the PIN model, we estimate the DY model numerically via maximum likelihood. Let

⇥DY,i = (↵i, µBi , µSi , ✏Bi , ✏Si , �i, ✓i,�Bi ,�Si) be the vector of parameters of the DY model

for stock i. Let Bi,t and Si,t be the number of buys and sells, respectively, for stock i on

day t. Let DDY,i,t = [Bi,t, Si,t,⇥DY,i]. The likelihood function of the extended model is
Q

T

t=1 L(DDY,i,t):

L(DDY,i,t) = LNI,NS(DDY,i,t) + LNI,S(DDY,i,t) + LI�,NS(DDY,i,t) (1)

+LI�,S(DDY,i,t) + LI+,NS(DDY,i,t) + LI+,S(DDY,i,t)

where LNI,NS(DDY,i,t) is the likelihood of observing Bi,t and Si,t on a day without private

information or a symmetric order flow shock; LNI,S(DDY,i,t) is the likelihood of Bi,t and Si,t

on a day without private information but with a symmetric order flow shock; LI�,NS (LI�,S)

is the likelihood of Bi,t and Si,t on a day with negative information and without (with) a

symmetric order flow shock; and LI+,NS (LI+,S) is the probability on a day with positive

information and without (with) a symmetric order flow shock. Analogous to the original

PIN model, each term in the likelihood function corresponds to a branch in the tree in Fig.

A1 and each term is given by:
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LNI,NS(DDY,i,t) = (1 � ↵i)(1 � ✓i)e
�✏Bi

✏
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(7)

In order to avoid local optima, we use the maximum of the likelihood maximization

with ten di↵erent starting points as in Duarte and Young (2009). In addition, for one of the

starting points we choose (✏B, ✏S) values, and (✏B+�B, ✏S+�S) equal to the sample means of

buys and sells computed by the k-means algorithm with k=2. The k-means algorithm looks

for clusters in the buys and sells such that each observation belongs to the cluster with the

nearest mean. Because we know a priori that buys and sells have a strong positive correlation

(see Duarte and Young (2009)), we partition the sample into high and low order flow clusters,

which correspond to the symmetric order flow shock/no symmetric order flow shock states in

the DY model. The other nine starting points are randomized. This procedure ensures that

at least one of the starting points is centered properly, as the numerical likelihood estimation

using purely random starts often stops at points outside of the central clusters of data.

A.3 CPIEDY

As with the PIN model, for each stock-day, we compute the probability of an information

event conditional on both the model parameters and on the number of buys and sells observed

that day. Specifically, let the indicator Ii,t take the value of one if an information event occurs

for stock i on day t and zero otherwise. We compute CPIEDY,i,t = P [Ii,t = 1|DDY,i,t] as:

CPIEDY,i,t =
LI+,NS(DDY,i,t) + LI+,S(DDY,i,t) + LI�,S(DDY,i,t) + LI�,NS(DDY,i,t)

L(DDY,i,t)
(8)
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Analogous to the PIN model, the Adj. PIN of a stock is ↵(�µB+(1��)µS)
↵(�µB+(1��)µS)+"B+"S+✓(�B+�S)

.

This is the unconditional probability that any given trade is initiated by an informed trader.

CPIEDY and Adj. PIN are linked via the unconditional probability of an information event,

↵, which is also the unconditional expectation of CPIEDY .

Table A1 contains summary statistics for the parameter estimates for the DY model as

well as summary statistics of the cross-sectional sample means and standard deviations of

CPIEDY . We see that the mean CPIE behaves exactly like ↵. Hence, changes in CPIEDY

and changes in the estimated alphas are analogous.

A.4 How does the DY model identify private information?

To illustrate how the CPIEDY works, we present a stylized example of the DY model in Fig.

A2. In Panel A we plot simulated and real order flow data for Exxon-Mobil during 1993,

with buys on the horizontal axis and sells on the vertical axis. Real data are marked as +,

and simulated data as transparent dots. The real data are shaded according to the CPIE,

with lighter points (+ cyan) representing low and darker points (+ magenta) high CPIEs.

The DY model generates six data clusters, greatly improving upon the PIN model’s

coverage of the data in 1993. The two clusters on the dotted line are not related to private

information, but the other four clusters are. An econometrician using the DY model, moving

along the dotted line, would observe that high turnover days–considered information days

under the PIN model–are no longer classified as such, because higher turnover may be driven

by symmetric order flow shocks under the DYmodel. Instead, the DYmodel identifies private

information when moving away from the dotted line; when buys are greater than sells and

vice versa.

Unfortunately, late in the sample the DY model breaks down. Panel B of Fig. A2 shows

that the DY model, like the PIN model, fails to fit the majority of the order flow data for

Exxon-Mobil in 2012. The problem of fitting the data is not limited to our stylized example.

Fig. A3 shows that after 2005 the DY model estimates that the total likelihood for 80% of

the order flow data of the median stock is less than 10�10.

As a more formal test of the DY model, Table A2 presents regressions of CPIEDY based

on simulated and real data. The right-hand side variables are the absolute order imbalance
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adjusted for buy/sell correlations (|adj.OIB|), turnover and its squared term. We define the

adjusted absolute order imbalance as the absolute value of the residual from a regression

of buys on sells. We use this measure to analyze the DY model because, as Fig. A2

suggests, the DY model implies that days with information events are far from the dashed

line in this figure.1 Turnover, as before, is defined as the sum of buys and sells. We report

median coe�cient estimates and t�statistics across all firms within a particular year. The

coe�cients are standardized as above. We report the average of the median, the 5th
, and

the 95th percentiles of the R
2s and R

2
inc

s.

As with the CPIEPIN , in theory, turnover has little additional power in explaining

CPIEDY . The incremental R
2s in Table A2 Panel A are low with an average value close to

4%. This is smaller than the average incremental R
2s of the PIN model. The intuition for

this result is that the DY model disentangles turnover and order flow shocks by including the

possibility of symmetric order flow shocks. Buying and selling activity can simultaneously

be higher than average, but this is not indicative of private information unless there is a

large order flow imbalance.

Panel B of Table A2 reports regression results for the real, rather than simulated, data.

The DY model behaves very di↵erently when using real data as opposed to data generated

from the model. The R
2s for the real data are much lower than those in the simulated data,

declining from 35% in 1993 to 12% in 2012. The incremental R
2 indicates that turnover and

turnover squared explain a large degree of variation in CPIEDY . Indeed, the average ratio

of the median R
2s, R

2
inc.

/(R2+R
2
inc.

), is about 40%. The p-values are the average probability

(under the DY model) of observing an incremental R
2 larger or equal to the observed in the

real data and %Rej. is the frequency that we reject the null hypothesis that the incremental

R
2 is consistent with the DY model at 5% significance. In 1993, our hypothesis test based

rejects the model at 5% significance for 48% of the stocks, while in 2012 this percentage

increases to around 70%.

1
Our results are qualitatively similar if we use absolute order imbalance instead of adjusted absolute order

imbalance.
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B Estimating Order Flow, ro,i,t and rd,i,t

Wharton Research Data Services (WRDS) provides trades matched to National Best Bid

and O↵er (NBBO) quotes at 0, 1, 2, and 5 second delay intervals. We use only “regular

way” trades, with original time and/or corrected timestamps to avoid incorrect quotes or

non-standard settlement terms. For instance, trades that are settled in cash or settled the

next business day.2 Prior to 2000, we match “regular way” trades to quotes delayed for 5

seconds; between 2000 and 2007, we match trades to quotes delayed for 1 second; and after

2007, we match trades to quotes without any delay.

We classify the matched trades as either buys or sells following the Lee and Ready (1991)

algorithm, which classifies all trades occurring above (below) the bid-ask mid-point as buyer

(seller) initiated. We use a tick test to classify trades that occur at the mid-point of the

bid and ask prices. The tick test classifies trades as buyer (seller) initiated if the price was

above/(below) that of the previous trade.

To estimate ro,i,t and rd,i,t, we run daily cross-sectional regressions of overnight and in-

traday returns on a constant, historical � (based on the previous 5 years of monthly CRSP

returns), log market cap, log book-to-market (following Fama and French (1992), Fama and

French (1993), and Davis, Fama, and French (2000)). We impose min/max values for book

equity (before taking logs) of 0.017 and 3.13, respectively. If book equity is negative, we

set it to 1 before taking logs, so that it is zero after taking logs. We use the residuals from

these daily cross-sectional regressions, winsorized at the 1 and 99% levels as our idiosyncratic

intraday (rd,i,t) and overnight (ro,i,t) returns.

C Details of the PIN model

C.1 PIN Likelihood

Let Bi,t (Si,t) represent the number of buys (sells) for stock i on day t and ⇥PIN,i =

(↵i, µi, ✏Bi , ✏Si , �i) represent the vector of the PIN model parameters for stock i. Let

DPIN,i,t = [⇥PIN,i, Bi,t, Si,t]. The likelihood of observing Bi,t and Si,t on a day without an

information event, on a day with positive information event, and on a day with a negative

2
Trade COND of (“@”,“*”, or “ ”) and CORR of (0,1)
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information event are:

LNI(DPIN,i,t) = (1 � ↵i)e
�✏Bi

✏
Bi,t

Bi

Bi,t!
e
�✏Si

✏
Si,t

Si

Si,t!
(9)

LI+(DPIN,i,t) = ↵i�ie
�(µi+✏Bi

) (µi + ✏Bi)
Bi,t

Bi,t!
e
�✏Si

✏
Si,t

Si

Si,t!
(10)

LI�(DPIN,i,t) = ↵i(1 � �i)e
�✏Bi

✏
Bi,t

Bi

Bi,t!
e
�(µi+✏i,S)

(µi + ✏i,S)Si,t

Si,t!
(11)

where LNI(DPIN,i,t) is the likelihood of observing Bi,t and Si,t on a day without private

information trading; LI� (LI+) is the likelihood of Bi,t and Si,t on a day with negative

(positive) information.

C.2 Maximum likelihood procedure

To estimate the PIN likelihood function, we use the maximum of the likelihood maximization

with ten di↵erent starting points as in Duarte and Young (2009). We note, however, that

late in the sample, the likelihood functions of the PIN are very close to zero. After 2006, the

PIN model suggests that 90% of the observed daily order flows for the median stock have

a near-zero probability (i.e. smaller than 10�10) of occurring. This makes the estimation

susceptible to local optima. To get around this problem, we choose one of our ten starting

points to be such that the PIN model clusters are close to the observed mean of the number

of buys and sells. Specifically, we choose ✏B and ✏S values equal to the sample means of buys

and sells, ↵ equal to 1%, and delta equal to the mean absolute value of order imbalance.

The other nine starting points are randomized. We do this in order to ensure that at least

one of the starting points is centered properly, as the numerical likelihood estimation using

purely random starts often stops at points outside of the central cluster of data.

C.3 Computing CPIEPIN

In Section 2 of the paper, we define the CPIE as the ratio of the “news” likelihood func-

tions to the sum total of the likelihood functions. In practice, there are many cases in the

PIN model for which the data a near-zero probability of occurring, meaning L(DPIN,i,t) =

LNI(DPIN,i,t) + LI+(DPIN,i,t) + LI�(DPIN,i,t) is smaller than 10�10. As a result the CPIE

ratio frequently results in a divide by zero error.
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In order to compute CPIE for these days, we “center” the likelihoods around the state

with the highest log-likelihood before computing the CPIE. For example, consider the PIN

model with:

Lmax ⌘ max{LNI , LI+ , LI�}, (12)

`max ⌘ log(Lmax) (13)

where ` represents the log of the corresponding likelihood function. We compute the centered

versions of each of the likelihood functions:

`
0
NI

= `NI � `max, (14)

`
0
I+ = `I+ � `max, (15)

`
0
I� = `I� � `max. (16)

We compute the CPIE
0 as:

CPIE
0
PIN

=
L
0
I+

+ L
0
I�

L0
NI

+ L0
I+

+ L0
I�

(17)

such that the most likely state has L
0 = 1. For a high turnover day, it may be the case that

L
0
I+

= 1, L
0
I� = 0 and L

0
NI

= 0; hence, the CPIE’ will be 1. This computational procedure

is equivalent to taking the limit of CPIEPIN as L(DPIN,i,t) goes to zero. We follow a similar

procedure to compute CPIEDY .

C.4 CPIEPIN of M&A targets around announcements

Aktas, de Bodt, Declerck, and Van Oppens (2007) find that PIN is higher after merger

announcements than before, partially as a result of increases in PIN model’s ↵. In this

section we show that their results are related to our main finding that the PIN model

identifies private information from turnover.

We examine the period t 2 [�30, 30] around the event. To do so, we estimate the

parameter vector ⇥PIN,i in the period t 2 [�312, �60] before the event and then compute

the daily CPIEs for the period t 2 [�30, 30] surrounding the announcement.

Panel A of Fig. A4 shows the average CPIEPIN in event time for our sample of M&A

targets. The graph shows that, under the PIN model, the probability of an information event
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increases prior to the event, starting at around 55% 20 days before the announcement and

peaking around 80% on the after day of the announcement. The rise in the probability of

an information event prior to the announcement is consistent with a world where informed

traders generate signals about potential mergers and acquisitions and trade on this informa-

tion before the events are announced to the public. However, CPIEPIN is also higher after

the actual announcements become public information. In fact, CPIEPIN remains above

the average CPIEPIN observed in the gap period, [�60, �31], for 20 trading days after the

announcement.

Panels B and C of Fig. A4 shed light on the features of the data that produce the observed

pattern in the average CPIEPIN in Panel A. Panel B shows the average predictions from OLS

regressions of CPIEPIN on order imbalance and absolute order imbalance squared across all

of the stocks in the event study sample. The solid line indicates that order imbalance explains

only a small fraction of the movement in CPIEPIN during the event window. Panel C shows

the average predictions from regressions of CPIEPIN on turnover and turnover squared.

The solid line indicates that the variation in CPIEPIN around M&A announcements is

explained almost entirely by turnover. The intuition follows directly from the main results,

which illustrates that CPIEPIN is mechanically driven by turnover increases. The higher

post-event turnover levels are enough to keep CPIEPIN above its pre-event mean for a

substantial period.

D Details of the EPIN model

The EPIN model extends the PIN model to allow for continuous variation in turnover unre-

lated to private information arrival.

D.1 The microstructure of the EPIN model

The market maker knows that the number of trades (i.e. B + S) on day t is distributed

as a Poisson random variable with intensity �t. The trade intensity, �t, is drawn from a

Gamma distribution with parameters r and p. In what follows, in the interest of clarity, we

suppress the t subscript on �. The market maker does not observe � directly, she only sees

the buy and sell orders as they arrive. The market maker also knows that at the beginning of
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every day the probability that informed traders receive a private signal is ↵. If the informed

receive a private signal, then the market maker knows that some fraction of the day’s total

number of trades will be informed. If the informed traders receive no private signal, then all

trades are uninformed. If there is no information in the market, then conditional on �, the

sum of buys and sells is drawn from a Poisson distribution with arrival rate �. If informed

traders do receive a private signal, ⌘ represents the ratio of the expected number of informed

to uninformed trades. Thus, if informed traders receive a private signal then the fraction of

informed trade to total trade is ⌘

1+⌘
. The corresponding fraction of uninformed trade is equal

to 1 � ⌘

1+⌘
= 1

1+⌘
. Thus, if informed traders receive a private signal, then conditional on

�, the total arrival rate of orders remains equal to ( 1
1+⌘

+ ⌘

1+⌘
)�=�. It is immediately clear

from this intuition that the probability of informed trade under the EPIN model is simply

the unconditional expected fraction of informed trade to total trade, PINEPIN = ↵⌘

1+⌘
. The

PINEPIN does not involve � because � determines the overall intensity of trade, but not the

split between informed and uninformed trade.

Formally, the probability that any given trade is informed is equal to the expected number

of informed trades divided by the expected number of trades. This ratio is:

E[Inf. Trades]

E[Trades]
=

E[E[Inf. Trades|�]]
E[E[Trades|�]] . (18)

The numerator for the EPIN is E[↵�
�

⌘

1+⌘

�
� + ↵(1 � �)

�
⌘

1+⌘

�
�], and the denominator is

simply E[�]. Simplifying we get that PINEPIN = ↵⌘

1+⌘
.

To see the connection between the PINPIN and PINEPIN , first note that we can write

the formula for PINPIN using Equation 18. Using the reparameterization of the PIN

model presented in Section 3.1, the numerator is ↵ ⇥ E[Inf. Trades|� = �(1)] + (1 � ↵) ⇥

E[Inf. Trades|� = �(0)]. The expected number of informed trades on days with private

information (� = �(1)) in the PIN model is µ and zero otherwise, hence the numerator of

Equation 18 reduces to ↵ ⇥ µ. Under the PIN model, the denominator of Equation 18 is

↵ ⇥ E[Trades|� = �(1)] + (1 � ↵) ⇥ E[Trades|� = �(0)]. The expected number of trades

on days with private information (� = �(1)) in the PIN model is ✏B + ✏S + µ and ✏B + ✏S

otherwise. Hence the denominator of Equation 18 reduces to ✏B + ✏S +↵ ⇥µ, which leads to

the formula PINPIN = ↵µ

↵µ+"B+"S
. Note that unlike the PINPIN , ↵ does not appear in the
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denominator of the PINEPIN . This di↵erence occurs because, in the PIN model, everything

else equal, stocks with higher ↵ have higher expected turnover. This relation has a direct

impact on the denominator of Equation 18 and comes about because of the conflation of

expected turnover and the arrival of private information in the PIN model (see Equation

1 in the paper). In the EPIN model, on the other hand, expected turnover (�) is drawn

independently of private information arrival. Hence, ↵ has no e↵ect on expected turnover

and thus no place in the denominator of Equation 18.

Finally, to verify that the EPIN model captures the same microstructure intuition as the

PIN model, consider the bid-ask spread under the EPIN model and the PIN model. Following

similar logic to that in Easley, Keifer, O’Hara and Paperman (1996), the expression for the

opening bid-ask spread under the EPIN model is the same as that under the PIN model:

↵⌘

1 + ⌘
⇥ (V � V ) = PINEPIN ⇥ (V � V ) (19)

where V is the value of the firm conditional on good news and V represents the value of the

firm conditional on bad news.

D.2 Negative binomial distribution in EPIN model

In the EPIN model, conditional on �t the distribution of turnover (B + S) is Poisson with

intensity �t. Moreover, �t is drawn from Gamma(r, p/(1 � p)) distribution. Hence, the

probability that B + S is equal to x in a given day is:

f(x; r, p) =

Z 1

0

�
x

x!
�

r�1 e
��(1�p)/p

( p

1�p
)r�(r)

d� =
(1 � p)rp�r

�(r)
p

r+x�(r + x) (20)

which is the well known Negative Binomial(r, p) (see Casella and Berger (2002)).

D.3 EPIN maximum likelihood estimation

Let ⇥EPIN = (↵, �, ⌘, ✓, r, p) be the vector of parameters of the EPIN model. Let Bi,t (Si,t)

represent the number of buys (sells) for stock i on day t and DEPIN,i,t = [⇥EPIN,i, Bi,t, Si,t].

The likelihood function of the extended PIN model is
Q

T

t=1 L(DEPIN,i,t), where

L(DPIN,i,t) = LNI(DEPIN,i,t) + LI+(DEPIN,i,t) + LI�(DEPIN,i,t). (21)
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Define the function:

f(B, S; r, p, ✓) =
✓

B(1 � ✓)S

B!S!

(1 � p)rp�r

�(r)
p

r+B+S�(r + B + S) (22)

And the parameters ✓I+ = (⌘ + ✓)/(1 + ⌘), ✓I� = ✓/(1 + ⌘)

LNI(DEPIN,i,t) = (1 � ↵)f(B, S; r, p, ✓)

LI+(DEPIN,i,t) = ↵�f(B, S; r, p, ✓I+)

LI+(DEPIN,i,t) = ↵(1 � �)f(B, S; r, p, ✓I�) (23)

Conditional on �t and analogous to the original PIN model, each term in the likeli-

hood function corresponds to a branch in the EPIN tree in the paper. We maximize the

EPIN likelihood function in two steps. First we estimate the parameters r and p to fit the

Negative Binomial(r, p) distribution to the turnover data. We then maximize the EPIN

likelihood with fixed r and p to obtain estimates of ↵, �, ⌘ and ✓. Analogous to the estimation

of the PIN likelihood, in each step we use the maximum likelihood based on ten random

starting points to avoid picking up local maxima.

D.4 Computing CPIEEPIN

As with the PIN model, for each stock-day, we compute the probability of an information

event conditional on both the model parameters and on the number of buys and sells observed

that day. We compute CPIEEPIN,i,t = P [Ii,t = 1|DDY,i,t], which is equal to (LI�(DEPIN,i,t)+

LI+(DEPIN,i,t))/L(DEPIN,i,t). CPIEEPIN is:

CPIEEPIN =
↵�✓

B

I+
(1 � ✓I+)S + ↵(1 � �)✓B

I�(1 � ✓I�)S

(1 � ↵)✓B(1 � ✓)S + ↵�✓B

I+
(1 � ✓I+)S + ↵(1 � �)✓B

I�(1 � ✓I�)S
(24)

D.5 The EPIN model does not conflate turnover with private in-
formation

As a formal test of the EPIN model we run regressions of CPIEEPIN on the proportion

of imbalanced trades ( |B�S|
B+S

) and a squared term (
� |B�S|

B+S

�2
).3 We use |B�S|

B+S
to analyze the

3
We do not directly compare the simulations of the EPIN model to those of the PIN model. Instead

we compare the real data for each model to the simulated data under the null hypothesis that each model
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EPIN model because, as we discuss in the paper, the EPIN model implies that days with

information events are the ones in which the proportion of imbalanced trades is large.

Panel A of Table A3 presents the results of regressions based on simulated data. As in

the case of the regressions for the PIN model in the paper, we report the median coe�cient

estimates and t-statistics. The coe�cients are standardized so they represent the increase

in CPIEEPIN due to a one standard deviation increase in the corresponding independent

variable. We also report the average of the median, the 5th, and the 95th percentiles of the

empirical distribution of R
2s of these regressions generated by the 1,000 simulations. In

general the EPIN model identifies private information from the proportion of imbalanced

trades. The median R
2 values are high, ranging from 61%-92%, while the incremental R

2

from turnover is small-typically below 4%.

Panel B of Table A3 reports regression results for the real rather than simulated data. In

contrast to the PIN model, in the real data the EPIN model identifies private information

from the proportion of imbalanced trades and not turnover. The median R
2 values are high,

ranging from 38%–72%, while the incremental R
2 from turnover is small—typically below

1%. Naturally, the EPIN model is not a perfect description of the order flow data. This can

be seen from the fact that R
2 values using the real data are on average lower than those

in the simulated data. However, the EPIN model fixes the conflation of arrival of private

information with turnover, namely in the majority of stock-year observations in the real data

the incremental R
2 due to turnover is at least as large as the incremental R2 in the simulated

data. Therefore, the EPIN model, while not a perfect description of the order flow data,

fixes the problem of the PIN model which mechanically identifies private information from

higher turnover.

E Details about the OWR model

E.1 OWR Likelihood

Let ⇥OWR,i = (↵i, �ui , �zi , �ii , �p,di , �p,oi) be the vector of parameters of this model. The

parameter ↵i is the probability that there is an information event on a given day. �
2
zi

is

identifies information consistent with the theory.
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the variance of the noise of the observed net order flow (ye); �
2
ui

is the variance of the

net order flow from noise traders; �
2
ii
is the variance of the private signal received by the

informed trader; �
2
p,di

is the variance of the intraday return; �
2
p,oi

is the variance of the

overnight return. Let rd,i,t, (ro,i,t) represent the intraday and overnight returns for stock i

on day t, and (ye,i,t) represent the order flow imbalance for stock i on day t. Let DOWR,i,t =

[⇥OWR,i, rd,i,t, ro,i,t, ye,i,t]. The likelihood of observing DOWR,i,t on a day without and with an

information event is:

LNI = (1 � ↵)fNI(DOWR,i,t) (25)

LI = ↵fI(DOWR,i,t) (26)

where fNI(DOWR,i,t) is the joint probability density of (ye,i,t, ro,i,t, rd,i,t) on days without

information, fI(DOWR,i,t) is the density of (ye,t, ro,t, rd,t) on days with information events.

Both fNI(DOWR,i,t) and fI(DOWR,i,t) are multivariate normal with zero means and covariance

matrices ⌦NIi and ⌦Ii . The covariance matrix ⌦NIi has elements:

V ar(ye) = �
2
u
+ �

2
z
, (27)

V ar(rd) = �
2
pd
+ ↵�

2
i
/4, (28)

V ar(ro) = �
2
po
+ ↵�

2
i
/4, (29)

Cov(rd, ro) = �↵�
2
i
/4, (30)

Cov(rd, ye) = ↵
1/2

�i�u/2, (31)

Cov(ro, ye) = �↵
1/2

�i�u/2 (32)

And ⌦Ii :

V ar(ye) = (1 + 1/↵)�2
u
+ �

2
z
, (33)

V ar(rd) = �
2
pd
+ (1 + ↵)�2

i
/4, (34)

V ar(ro) = �
2
po
+ (1 + ↵)�2

i
/4, (35)

Cov(rd, ro) = (1 � ↵)�2
i
/4, (36)

Cov(rd, ye) = ↵
�1/2

�i�u/2 + ↵
1/2

�i�u/2, (37)

Cov(ro, ye) = ↵
�1/2

�i�u/2 � ↵
1/2

�i�u/2 (38)
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E.2 How does the OWR model identify private information?

In theory, the OWR model identifies private information from the covariance matrix of the

three variables in the model (ye,i,t, ro,i,t, rd,i,t). To analyze the model, we run the regression

of CPIEOWR on the squared and interaction terms of (ye,i,t, ro,i,t, rd,i,t):

CPIEOWR,i,t = �0+�1y
2
e,i,t

+�2r
2
d,i,t

+�3r
2
o,i,t

+�4ye,i,trd,i,t+�5ye.i,tro,i,t+�6rd,i,tro,i,t+ui,t. (39)

Panel A of Table A4 presents median coe�cient estimates, t-statistics, and three per-

centiles of R
2s across all firms within a particular year using simulated data. The results

highlight the intuition behind the model. The probability of an information event on any

given day is increasing in the square of intraday returns, the interaction between imbalance

and intraday (or overnight) returns, and the interaction between intraday and overnight

returns. The coe�cient estimates on the square of the order imbalance and on the square

of overnight returns are too small to be precisely measured. The high R
2s indicate that,

practically speaking, the square of intraday returns, the interaction between intraday and

overnight returns and the interaction between intraday returns and order flow imbalance are

su�cient to explain a large part of the variation in CPIEOWR.

Panel B of Table A4 shows the median coe�cient estimates, t-statistics, and the results

of the hypothesis tests based on R
2s across all firms within a particular year using real data.

Unlike the PIN and DY models, the coe�cient estimates are consistent across the simulated

and real data. For instance in simulated data regressions in Panel A, 2008 is the only year

in which y
2
e
is the most important term. In the real data regressions in Panel B, 2008 is also

the only year in which y
2
e
is the most important term, indicating that the model matches the

features of the data quite well, even for clear outliers like 2008. Furthermore, as with the

simulated data regressions, the high median R
2s indicate that a large part of the variation in

CPIEOWR is explained by the squared and interaction terms of (ye,i,t, ro,i,t, rd,i,t) as implied

by the model. The average across years of the R
2s in Panel B is about 83% and these R

2s

increase over time, reaching 90% in 2012. Moreover, we reject the null hypothesis that the

R
2s observed in the real data are consistent with the OWR model at 5% level for about 40%

of the sample in 1993 and for about 8% of the sample in 2012.

The high R
2s in Panel B imply that, in principle, any variable unrelated to private
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information under the OWR model has only a small incremental value in explaining the

CPIEOWR. To see this note that the typical R
2 in Panel B is around 85%. This suggests

that any additional regressor, even if it explained 100% of the residual variation in the

regressions in Panel B, could only marginally improve the R
2 from 85% to 100%. Note that

in the case of the PIN and DY models, our results show that turnover, which in principle is

a poor measure of private information, largely drives the PIN and DY models’ identification

of private information. In contrast, under the OWR model the variables related to private

information in the model (squares and interactions of ye, ro, and rd) can explain a fairly

large amount of the variation in CPIEOWR. As a result, any variable that is not related to

private information in the OWR model can only explain a relatively small fraction of the

variation in CPIEOWR.
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Table A1: DY Estimates. This table summarizes parameter estimates of the DY model
for 21,206 PERMNO-Year samples from 1993–2012. ↵ represents the average unconditional
probability of an information event at the daily level. ✏B and ✏S represent the expected
number of daily buys and sells given no private information or symmetric order flow shocks.
µb, and µs represent the expected additional order flows given an information event, which
is good news with probability � and bad news with probability 1 � �. A symmetric order
flow shock occurs with probability ✓, in which case the expected number of buys and sells
increase by �B and �S, respectively. CPIE and Std(CPIE) are the PERMNO-Year mean
and standard deviation of CPIEDY .

N Mean Std Q1 Median Q3

↵ 21,206 0.456 0.092 0.409 0.464 0.509

� 21,206 0.550 0.192 0.441 0.541 0.680

✓ 21,206 0.249 0.137 0.149 0.253 0.344

✏b 21,206 1,418 4,571 26 158 866

✏s 21,206 1,397 4,570 28 148 807

�b 21,206 2,148 10,058 41 190 989

�s 21,206 2,097 9,934 34 160 908

µb 21,206 290 575 29 119 310

µs 21,206 284 574 27 107 302

CPIE 21,206 0.455 0.092 0.409 0.461 0.506

Std(CPIE) 21,206 0.454 0.056 0.431 0.479 0.493



Table A2: DY Model Regressions. This table reports real and simulated regressions of the CPIEDY on absolute adjusted
order imbalance (|adj. OIB|), and absolute adjusted order imbalance squared (|adj. OIB|2). In Panel A, we simulate 1,000
instances of the PIN model for each PERMNO-Year in our sample (1993–2012) and report mean standardized estimates for the
median stock, along with 5%, 50%, and 95% values of the R

2 (R2
inc.

) values. We compute the incremental R
2
inc.

as the R
2

attributed to turn and turn
2 in an extended regression model. In Panel B, we report standardized estimates for the median

stock using real data, along with the median R
2 and R

2
inc.

values, and tests of the null hypothesis that the observed relation
between CPIEDY and turn is consistent with the DY model. The p-value is the average probability of observing an R

2
inc.

at
least as large as what is observed in the real data. The % Rej. is the fraction of stocks for which we reject the hypothesis at
the 5% level.

(a) Simulated Data

� t R
2

R
2
inc.

|adj. OIB| |adj. OIB|2 |adj. OIB| |adj. OIB|2 5% 50% 95% 5% 50% 95%

1993 0.518 -0.230 (10.88) (-4.74) 52.28% 59.44% 66.01% 5.55% 9.86% 15.29%
1994 0.484 -0.214 (10.47) (-4.42) 50.66% 58.06% 64.97% 5.56% 9.46% 14.95%
1995 0.475 -0.214 (9.96) (-4.32) 46.81% 54.46% 61.69% 7.01% 11.71% 17.54%
1996 0.516 -0.229 (10.54) (-4.60) 51.36% 58.62% 65.21% 5.18% 9.09% 14.31%
1997 0.513 -0.221 (10.33) (-4.40) 50.55% 57.80% 64.50% 4.78% 8.57% 14.03%
1998 0.537 -0.236 (10.60) (-4.49) 52.85% 60.14% 66.63% 4.00% 7.45% 12.31%
1999 0.607 -0.281 (11.92) (-5.45) 56.53% 63.49% 69.68% 3.07% 6.11% 10.47%
2000 0.597 -0.272 (11.43) (-5.09) 55.69% 62.59% 69.09% 2.82% 5.65% 9.73%
2001 0.729 -0.350 (13.81) (-6.75) 65.81% 71.48% 76.83% 0.62% 1.87% 4.09%
2002 0.769 -0.371 (15.03) (-7.28) 71.90% 76.37% 80.55% 0.24% 1.04% 2.41%
2003 0.805 -0.394 (16.06) (-7.99) 74.77% 78.95% 82.78% 0.34% 1.19% 2.71%
2004 0.798 -0.385 (15.94) (-7.61) 77.39% 81.40% 84.70% 0.23% 0.95% 2.22%
2005 0.787 -0.365 (16.23) (-7.40) 79.40% 83.08% 86.23% 0.25% 0.97% 2.20%
2006 0.761 -0.332 (15.52) (-6.74) 79.38% 83.00% 86.15% 0.45% 1.41% 2.88%
2007 0.736 -0.311 (12.97) (-5.97) 69.81% 74.50% 79.19% 1.23% 2.93% 5.99%
2008 0.755 -0.317 (15.14) (-6.52) 77.82% 81.67% 85.36% 0.34% 1.21% 2.82%
2009 0.768 -0.331 (16.09) (-7.01) 79.54% 83.16% 86.38% 0.63% 1.70% 3.51%
2010 0.769 -0.329 (15.95) (-7.01) 78.65% 82.63% 86.22% 0.56% 1.64% 3.66%
2011 0.754 -0.313 (15.47) (-6.73) 77.75% 81.79% 85.71% 0.63% 1.87% 4.10%
2012 0.763 -0.328 (15.65) (-7.01) 77.64% 81.93% 85.61% 0.89% 2.25% 4.69%



Table A2: DY Model Regressions. Continued.

(b) Real Data

� t R
2

R
2
inc.

|adj. OIB| |adj. OIB|2 |adj. OIB| |adj. OIB|2 50% 50% p-value % Rej.

1993 0.369 -0.170 (7.61) (-3.48) 34.07% 15.22% 23.83% 48.21%
1994 0.348 -0.150 (7.51) (-3.16) 33.55% 14.53% 23.87% 48.38%
1995 0.342 -0.149 (6.99) (-3.00) 30.15% 15.63% 29.41% 43.47%
1996 0.358 -0.164 (7.33) (-3.42) 31.11% 14.19% 25.56% 50.64%
1997 0.334 -0.140 (6.49) (-2.78) 28.00% 13.92% 26.26% 50.56%
1998 0.329 -0.136 (6.21) (-2.62) 26.26% 12.97% 22.18% 57.16%
1999 0.365 -0.166 (6.91) (-3.16) 27.89% 12.56% 18.93% 62.38%
2000 0.333 -0.145 (5.75) (-2.55) 23.49% 11.88% 20.82% 62.06%
2001 0.374 -0.176 (6.38) (-3.06) 25.25% 9.07% 15.71% 74.29%
2002 0.328 -0.130 (4.82) (-1.90) 21.31% 9.08% 10.15% 82.14%
2003 0.334 -0.135 (4.84) (-1.98) 21.55% 8.58% 10.51% 81.42%
2004 0.295 -0.104 (4.15) (-1.46) 18.31% 9.57% 10.09% 83.63%
2005 0.279 -0.103 (4.03) (-1.51) 16.23% 10.61% 11.10% 82.60%
2006 0.243 -0.083 (3.40) (-1.17) 12.46% 11.15% 16.81% 77.86%
2007 0.219 -0.086 (3.14) (-1.25) 9.66% 12.26% 25.72% 65.76%
2008 0.217 -0.086 (3.05) (-1.23) 8.83% 11.92% 19.43% 74.90%
2009 0.230 -0.093 (3.24) (-1.30) 10.04% 11.43% 19.40% 74.53%
2010 0.241 -0.103 (3.41) (-1.49) 10.59% 12.38% 21.74% 71.55%
2011 0.245 -0.102 (3.45) (-1.50) 10.35% 13.05% 21.61% 71.57%
2012 0.275 -0.127 (4.04) (-1.86) 12.22% 12.20% 23.56% 70.88%



Table A3: EPIN Model Regressions. This table reports real and simulated regressions of the CPIEEPIN on the proportion
of imbalanced trades

� |B�S|
B+S

�
and its square. In Panel A, we simulate 1,000 instances of the EPIN model for each PERMNO-Year

in our sample (1993–2012) and report mean standardized estimates for the median stock, along with 5%, 50%, and 95% values
of the R

2 (R2
inc.

) values. We compute the incremental R
2
inc.

as the R
2 attributed to turn and turn

2 in an extended regression
model. In Panel B, we report standardized estimates for the median stock using real data, along with the median R

2 and R
2
inc.

values, and tests of the null hypothesis that the observed relation between CPIEEPIN and turn is consistent with the EPIN
model. The p-value is the average probability of observing an R

2
inc.

at least as large as what is observed in the real data. The
% Rej. is the fraction of stocks for which we reject the hypothesis at the 5% level.

(a) Simulated Data

� t R2 R2
inc.

|B�S|
B+S

� |B�S|
B+S

�2 |B�S|
B+S

� |B�S|
B+S

�2
5% 50% 95% 5% 50% 95%

1993 0.382 -0.134 (8.22) (-3.04) 57.61% 63.37% 68.65% 1.79% 4.07% 7.31%

1994 0.355 -0.119 (8.19) (-2.83) 56.90% 62.64% 67.90% 1.76% 4.23% 7.74%

1995 0.350 -0.113 (7.86) (-2.59) 59.18% 64.87% 69.82% 1.68% 3.86% 7.24%

1996 0.364 -0.122 (8.31) (-2.90) 60.59% 65.85% 70.81% 1.60% 3.84% 6.94%

1997 0.369 -0.126 (8.03) (-2.84) 58.63% 64.01% 69.13% 1.29% 3.34% 6.34%

1998 0.388 -0.131 (8.93) (-3.03) 60.99% 66.95% 71.74% 1.02% 2.81% 5.69%

1999 0.465 -0.190 (10.90) (-4.26) 64.29% 69.23% 73.64% 1.01% 2.71% 5.10%

2000 0.447 -0.171 (9.34) (-3.60) 60.81% 65.74% 70.43% 0.82% 2.42% 4.95%

2001 0.425 -0.123 (6.77) (-2.08) 59.82% 65.02% 70.21% 0.71% 2.13% 4.40%

2002 0.243 0.007 (2.86) (0.08) 55.43% 61.22% 66.58% 0.52% 1.87% 3.97%

2003 0.033 0.202 (0.30) (1.95) 56.10% 62.06% 67.76% 0.51% 1.78% 4.05%

2004 -0.477 0.679 (-4.25) (6.10) 56.37% 62.52% 68.15% 0.38% 1.47% 3.43%

2005 0.343 -0.062 (3.38) (-0.67) 64.83% 70.03% 74.47% 0.16% 0.86% 2.23%

2006 0.294 -0.018 (3.16) (-0.21) 72.38% 77.14% 80.90% 0.06% 0.42% 1.30%

2007 0.778 -0.338 (17.81) (-7.59) 86.47% 88.49% 90.35% 0.02% 0.17% 0.54%

2008 0.784 -0.335 (18.60) (-7.90) 90.29% 91.75% 93.13% 0.01% 0.12% 0.42%

2009 0.774 -0.321 (19.72) (-8.04) 91.13% 92.47% 93.73% 0.01% 0.12% 0.40%

2010 0.773 -0.318 (19.47) (-7.97) 90.93% 92.27% 93.57% 0.01% 0.13% 0.45%

2011 0.783 -0.335 (19.80) (-8.16) 91.08% 92.48% 93.67% 0.01% 0.11% 0.40%

2012 0.781 -0.332 (19.89) (-8.23) 90.82% 92.27% 93.54% 0.01% 0.12% 0.41%



Table A3: EPIN Model Regressions. Continued.

(b) Real Data

� t R2 R2
inc.

|B�S|
B+S

� |B�S|
B+S

�2 |B�S|
B+S

� |B�S|
B+S

�2
50% 50% p-value % Rej.

1993 0.336 -0.113 (8.20) (-2.93) 57.90% 1.00% 87.77% 3.26%

1994 0.321 -0.108 (8.12) (-2.92) 56.55% 1.11% 84.63% 3.30%

1995 0.317 -0.098 (7.99) (-2.62) 58.03% 1.08% 82.66% 4.03%

1996 0.339 -0.117 (8.73) (-3.06) 59.28% 0.99% 84.95% 3.08%

1997 0.339 -0.117 (8.38) (-2.98) 57.53% 1.03% 82.25% 4.16%

1998 0.362 -0.132 (9.59) (-3.34) 61.34% 0.88% 82.57% 3.73%

1999 0.433 -0.183 (11.55) (-4.88) 62.95% 0.80% 81.82% 5.18%

2000 0.419 -0.168 (9.74) (-3.95) 58.88% 0.75% 81.03% 4.00%

2001 0.402 -0.143 (7.32) (-2.62) 50.55% 0.48% 84.33% 3.52%

2002 0.255 -0.020 (3.57) (-0.27) 42.07% 0.47% 80.50% 3.75%

2003 0.126 0.101 (1.70) (1.36) 40.55% 0.46% 80.20% 3.19%

2004 -0.067 0.280 (-0.88) (3.54) 38.32% 0.42% 75.32% 4.72%

2005 0.249 -0.015 (3.29) (-0.20) 41.68% 0.41% 70.49% 6.64%

2006 0.264 -0.021 (3.81) (-0.34) 43.41% 0.36% 59.43% 13.40%

2007 0.762 -0.447 (16.12) (-9.57) 66.36% 0.31% 40.73% 25.49%

2008 0.800 -0.480 (18.60) (-11.20) 70.98% 0.23% 39.63% 26.42%

2009 0.813 -0.492 (19.08) (-11.49) 71.79% 0.23% 39.13% 31.68%

2010 0.814 -0.488 (18.94) (-11.44) 72.77% 0.21% 41.33% 28.77%

2011 0.809 -0.480 (18.79) (-11.21) 71.67% 0.22% 39.58% 29.71%

2012 0.804 -0.475 (18.83) (-11.14) 72.72% 0.20% 42.12% 26.87%



Table A4: OWR Model Regressions. This table reports real and simulated regressions of the CPIEOWR on the squared
and interaction terms of ye, rd, and ro. In Panel A, we simulate 1,000 instances of the OWR model for each PERMNO-Year in
our sample (1993–2012) and report mean standardized estimates for the median stock, along with 5%, 50%, and 95% values of
the R

2 values. In Panel B, we report standardized estimates for the median stock using real data, along with the median R
2

values, and tests of the null that the model fits the data. The p-value is the average probability of observing an R
2 at least as

small as what is observed in the real data. The % Rej. is the fraction of stocks for which we reject the null at the 5% level.

(a) Simulated Data

� t R2

y2
e ye ⇥ rd ye ⇥ ro r2d rd ⇥ ro r2o y2

e ye ⇥ rd ye ⇥ ro r2d rd ⇥ ro r2o 5% 50% 95%

1993 0.002 0.068 -0.003 0.017 0.016 0.096 (0.42) (11.52) (-0.66) (2.71) (3.34) (17.78) 68.29% 79.86% 88.22%

1994 0.002 0.065 -0.003 0.018 0.017 0.093 (0.53) (12.10) (-0.67) (3.14) (3.80) (18.95) 70.03% 81.70% 89.67%

1995 0.003 0.065 -0.003 0.019 0.018 0.093 (0.57) (12.03) (-0.71) (3.14) (4.00) (18.83) 69.82% 81.98% 89.91%

1996 0.003 0.066 -0.003 0.020 0.019 0.094 (0.68) (12.73) (-0.76) (3.77) (4.43) (20.14) 72.12% 83.64% 91.18%

1997 0.003 0.063 -0.003 0.018 0.018 0.092 (0.77) (14.31) (-0.80) (4.05) (4.73) (21.45) 73.01% 85.04% 92.43%

1998 0.002 0.070 -0.004 0.018 0.017 0.102 (0.67) (16.25) (-1.01) (4.14) (4.70) (24.53) 74.91% 86.68% 93.93%

1999 0.003 0.060 -0.003 0.017 0.018 0.093 (0.74) (13.90) (-0.75) (3.88) (4.86) (22.15) 72.82% 84.70% 92.22%

2000 0.003 0.051 -0.002 0.017 0.019 0.085 (0.87) (13.37) (-0.58) (4.20) (5.64) (22.86) 73.87% 85.03% 92.21%

2001 0.002 0.066 -0.004 0.014 0.014 0.098 (0.51) (17.18) (-1.15) (3.72) (4.25) (26.22) 76.05% 87.58% 94.14%

2002 0.001 0.066 -0.003 0.012 0.013 0.099 (0.44) (18.37) (-1.03) (3.40) (3.89) (27.41) 76.47% 87.94% 94.40%

2003 0.002 0.071 -0.005 0.014 0.013 0.105 (0.48) (19.18) (-1.53) (3.50) (3.84) (27.86) 77.31% 88.81% 94.93%

2004 0.001 0.068 -0.005 0.012 0.012 0.100 (0.49) (21.61) (-1.91) (4.05) (4.06) (30.04) 79.32% 90.05% 95.22%

2005 0.002 0.061 -0.005 0.012 0.012 0.086 (0.60) (22.68) (-2.02) (4.35) (4.35) (31.06) 80.89% 90.80% 95.18%

2006 0.001 0.063 -0.004 0.011 0.011 0.089 (0.52) (22.88) (-1.91) (3.95) (4.14) (30.37) 80.34% 90.48% 95.19%

2007 0.001 0.051 -0.003 0.002 0.004 0.068 (0.65) (22.32) (-1.69) (0.78) (1.68) (28.67) 81.21% 90.63% 95.41%

2008 0.076 0.000 -0.001 0.000 0.004 0.001 (27.51) (0.07) (-0.25) (0.10) (1.42) (0.29) 76.59% 88.91% 95.17%

2009 0.002 0.039 -0.002 0.001 0.005 0.060 (1.18) (18.30) (-0.73) (0.35) (2.36) (27.24) 80.66% 90.07% 95.06%

2010 0.002 0.038 -0.002 0.000 0.000 0.046 (0.94) (18.05) (-1.34) (0.13) (0.23) (22.24) 78.97% 88.62% 94.54%

2011 0.001 0.042 -0.002 0.000 0.000 0.055 (0.79) (19.58) (-1.37) (0.11) (0.16) (24.64) 80.82% 90.39% 95.10%

2012 0.001 0.046 -0.003 0.000 0.000 0.055 (0.68) (19.47) (-1.55) (0.11) (0.22) (23.02) 79.83% 89.47% 94.62%



Table A4: OWR Model Regressions. Continued.

(b) Real Data

� t R2

y2
e ye ⇥ rd ye ⇥ ro r2d rd ⇥ ro r2o y2

e ye ⇥ rd ye ⇥ ro r2d rd ⇥ ro r2o 50%

1993 -0.000 0.053 -0.000 0.032 0.029 0.055 (-0.03) (7.24) (-0.13) (4.41) (4.56) (8.11) 69.97%

1994 0.000 0.053 -0.001 0.032 0.027 0.060 (0.06) (8.11) (-0.17) (4.69) (4.68) (9.44) 72.00%

1995 0.001 0.052 -0.001 0.033 0.029 0.059 (0.15) (7.92) (-0.17) (4.74) (4.89) (9.35) 72.73%

1996 0.001 0.055 -0.003 0.032 0.028 0.062 (0.28) (8.61) (-0.52) (4.77) (4.81) (9.83) 73.65%

1997 0.002 0.054 -0.002 0.029 0.027 0.061 (0.36) (8.90) (-0.53) (4.85) (4.84) (10.17) 74.72%

1998 0.002 0.069 -0.004 0.025 0.023 0.074 (0.37) (11.25) (-0.89) (4.43) (4.15) (12.61) 77.46%

1999 0.002 0.057 -0.003 0.025 0.025 0.065 (0.56) (9.59) (-0.64) (4.33) (4.58) (11.66) 76.48%

2000 0.003 0.050 -0.003 0.021 0.022 0.066 (0.82) (10.58) (-0.98) (4.50) (5.15) (14.37) 79.83%

2001 0.001 0.068 -0.003 0.018 0.016 0.078 (0.47) (14.62) (-0.94) (4.10) (3.81) (16.91) 83.25%

2002 0.002 0.072 -0.002 0.016 0.014 0.081 (0.47) (16.83) (-0.72) (3.88) (3.71) (19.17) 84.71%

2003 0.002 0.080 -0.003 0.017 0.015 0.080 (0.60) (20.66) (-0.94) (4.38) (3.93) (20.51) 87.22%

2004 0.001 0.077 -0.005 0.016 0.012 0.074 (0.54) (24.74) (-1.74) (4.48) (3.58) (21.11) 88.70%

2005 0.002 0.072 -0.005 0.013 0.010 0.065 (0.83) (25.08) (-2.12) (4.36) (3.32) (20.58) 89.54%

2006 0.002 0.072 -0.005 0.013 0.010 0.066 (0.74) (25.53) (-1.61) (4.12) (3.36) (20.42) 89.47%

2007 0.002 0.058 -0.003 0.004 0.005 0.058 (0.98) (18.17) (-0.97) (1.40) (1.79) (17.59) 89.34%

2008 0.077 0.004 -0.002 0.003 0.006 0.007 (22.41) (1.10) (-0.55) (1.07) (2.00) (1.54) 88.02%

2009 0.003 0.038 -0.002 0.004 0.006 0.053 (1.55) (15.99) (-0.87) (1.85) (2.42) (22.33) 89.34%

2010 0.002 0.035 -0.002 0.002 0.003 0.038 (1.39) (16.80) (-0.69) (1.02) (1.53) (15.83) 89.54%

2011 0.002 0.043 -0.002 0.002 0.003 0.050 (1.27) (17.71) (-0.84) (1.04) (1.50) (18.56) 89.84%

2012 0.002 0.045 -0.003 0.002 0.003 0.039 (1.14) (20.34) (-1.05) (1.20) (1.54) (17.30) 90.29%



Figure A1: DY Tree. For a given trading day, private information arrives with probability
↵. When there is no private information, buys and sells are Poisson with intensity ✏B and ✏S.
Private information is good news with probability �. The expected number of buys (sells)
increases by µ in case of good (bad) news. Non-information related order flow shocks arrive
with probability ✓. In the event of an order flow shock, buys and sells increase by �b and �s

respectively.



Figure A2: XOM DY. This figure compares the real and simulated data for XOM in 1993
and in 2012 using the DY model. In Panels A and B, the real data are marked as +. The real
data are shaded according to the CPIEDY , with darker markers (+ magenta) representing
high and lighter markers (+ cyan) low CPIEs. The simulated data points are represented
by transparent dots, such that high probability states appear as a dense, dark “cloud” of
points, and low probability states appear as a light “cloud” of points. The DY model extends
the three states of the PIN model corresponding to no news, good news, and bad news with
three additional states with higher order flows due to non-information symmetric order flow
shocks.

(a) XOM 1993 (b) XOM 2012



Figure A3: Breakdown of the DY Model. This figure shows the distribution of the
percent of days where the total likelihood, given the model parameters and observed order
flow data is less than 10�10—days, according to the model, with near-zero probability of
occurring. The solid black line represents the median stock, and the dotted lines represent
the 5, 25, 75, and 95 percentiles.
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Figure A4: M&A Targets - PIN. Panel A shows the average CPIEPIN for the PIN model in event time surrounding M&A
announcements in target stocks. Panels B and C compare the average CPIEPIN with the CPIEPIN predicted with either the
absolute order imbalance or turnover, respectively. To obtain the predictions, we run regressions of daily CPIEPIN on |B � S|
or turn, and their respective squared terms.
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(b) Prediction using |B � S| and |B � S|2
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(c) Prediction using turn and turn2
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