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The Probability of Informed Trade (PIN) model, developed in a series of seminal papers

including Easley and O’Hara (1987), Easley, Kiefer, O’Hara, and Paperman (1996), and

Easley, Kiefer, and O’Hara (1997) is extensively used in the accounting, corporate finance

and asset pricing literatures as a measure of information asymmetry.1 Recently, several

papers have documented some perhaps puzzling variation in PIN around events (e.g. Aktas,

de Bodt, Declerck, and Van Oppens (2007), Benos and Jochec (2007), and Collin-Dufresne

and Fos (2015)). While these papers suggest potential problems with the PIN model, there

remains no definitive test of a model’s ability to capture the arrival of private information

because such information is inherently unobservable. Therefore, any test of a model’s ability

to capture private-information arrival is, in effect, a joint hypothesis test. For instance, using

earnings announcements, the PIN model has been tested under the working hypothesis that

the arrival of private information is more likely before an earnings announcement than after

one. This hypothesis, however, is controversial because it is possible that agents convert

public information into private signals using superior analysis (e.g. Kim and Verrecchia

(1994, 1997)). In such a case, rather than indicating problems with the model, a higher PIN

after an earnings announcement would indicate that the PIN model properly captures the

arrival of private information. Therefore, the apparently puzzling findings in the literature

may be due to incorrect assumptions about the timing of private-information arrival, rather

than problems with the PIN model.

Our first research question is whether the PIN model mis-identifies the arrival of pri-

vate information. Our examination of the PIN model’s ability to identify private infor-

mation uses the working hypothesis that days of high turnover cannot all be considered

private-information days.2 Conversely, low turnover days cannot all be considered no private-

information days. In contrast to the prior literature, our working hypothesis does not make

specific assumptions about the arrival of private information. Instead, it is based on two

1A Google scholar search reveals that this series of PIN papers has been cited more than 3,500 times as of
this writing. Recent examples of papers that use PIN in the finance and accounting literature include Chen,
Goldstein, and Jiang (2007), Duarte, Han, Harford, and Young (2008), Bakke and Whited (2010), Da, Gao,
and Jagannathan (2011), Ferreira, Ferreira, and Raposo (2011), Akins, Ng, and Verdi (2012), Brennan, Huh,
and Subrahmanyam (2015), and Bennett, Garvey, Milbourn, and Wang (2017).

2In what follows, we refer to buyer initiated trades as ‘buys’, seller initiated trades as ‘sells’, turnover as
the number of buys plus sells, order flow as either buys or sells, and absolute order flow imbalance as the
absolute value of the difference between buys and sells.
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uncontroversial, but closely related, principles. First, although turnover may be related to

the arrival of private information, it also varies for myriad reasons unrelated to private infor-

mation. For instance, turnover can increase due to disagreement (e.g. Kandel and Pearson

(1995), and Banerjee and Kremer (2010)). Turnover is subject to calendar effects because

traders coordinate trade on certain days to reduce trading costs (Admati and Pfleiderer

(1988)). Furthermore, turnover can vary due to portfolio rebalancing (Lo and Wang (2000))

and taxation reasons (Lakonishok and Smidt (1986)). Therefore, a model that identifies the

arrival of private information from turnover alone treats all the reasons for which turnover

might vary as private information related. Second, even if one were to attempt to infer

private-information arrival from turnover, reliable inferences cannot be gleaned from a sim-

ple heuristic based on whether turnover is low or high. This notion is so uncontroversial that

we are unaware of any paper in the vast market microstructure literature that proposes iden-

tifying private-information arrival in this way.3 Indeed, the literature has not even reached

a consensus about the sign of the relation between turnover and information asymmetry.4

To address our first research question, we employ a variable called the Conditional Proba-

bility of an Information Event (CPIE). CPIE is the probability that a model assigns to the

arrival of private information on a particular day, given the data on that day. For instance,

CPIEPIN is the probability of private-information arrival on a given day, conditional on the

PIN model parameters and the observed daily order flow. By examining day-to-day variation

in CPIE, an econometrician can infer how the model identifies private information.

We compare variation in CPIEPIN to variation in the CPIE of a model that mechan-

ically identifies the arrival of private information from turnover, hereafter called the Me-

chanical model. The idea behind this comparison is that if the PIN model identifies private-

information arrival mechanically from turnover, it should be of no more use in identifying the

arrival of such information than the Mechanical model. Our Mechanical model sets the prob-

ability of private-information arrival to one whenever turnover is higher than average and

zero otherwise.5 Formally, CPIEMech,j,t is a dummy variable with value one when turnover

3Stickel and Verrecchia (1994) propose identifying information arrival in general based on whether volume
is above or below the mean, but not private information in particular.

4See O’Hara (1997) for a review.
5We use the term Mechanical ‘model’ for convenience. The Mechanical model is intentionally not a

structural model, instead it is just a heuristic.
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on day t for stock j is above the annual mean of daily turnover for stock j and zero otherwise.

As such, we also refer to CPIEMech as the ‘Mechanical dummy.’ Essentially, the Mechanical

model amounts to the economically implausible statement that private information is sure

to arrive on any day when turnover is ‘high’ (above the mean) and no private information

ever arrives on days when turnover is ‘low’ (below the mean). As a result, the Mechanical

model cannot produce reliable inferences about the arrival of private information.

To make our comparison, we estimate time-series regressions of CPIEPIN on CPIEMech

for each stock j. We find that the Mechanical dummy alone explains around 65% of the

variation in CPIEPIN . A natural question is whether this high average R2 is the result of a

potentially complex, non-linear functional relation between turnover and CPIEPIN instead

of a relation captured by a simplistic dummy variable (i.e. CPIEMech). To address this

possibility, we show that turnover and its square add only 8% to the explanatory power

of CPIEMech. More significantly, while turnover varies for many reasons unrelated to the

arrival of private information, turnover may vary with the arrival of private information.

Thus, it is possible that the relation between CPIEPIN and turnover obtains because the

PIN model properly captures that portion of variation in turnover that results from the

arrival of private information. To address this concern, we control for a series of variables

that the literature suggests are related to both private-information arrival and turnover (e.g.

volatility). Our results indicate that these controls add only 4% to the explanatory power

of turnover, its square, and CPIEMech. In summary, our regressions indicate that the PIN

model mechanically identifies the arrival of private information from turnover.

Two limitations of the PIN model combine to cause this conflation of variation in turnover

with the arrival of private information. First, under the PIN model, increases in expected

turnover can only come about through the arrival of private information.6 Second, the PIN

model cannot simultaneously match both the mean and the variance of turnover due to its

restrictive distributional assumptions. As a result of these limitations, when confronted with

actual data, the model mechanically interprets periods of ‘high’ (‘low’) turnover as periods

of private-information (no private-information) arrival.

6In the PIN model, realized turnover varies even without the arrival of private information. Expected
turnover, however, varies only with the arrival of private information.
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To further demonstrate that the PIN model’s inferences are unreliable due to the confla-

tion of turnover with private-information arrival, we compare CPIEPIN with CPIEMech in

two settings from the literature on private information. First, Cohen, Malloy, and Pomorski

(2012) propose a method to identify opportunistic insider trades. Their results suggest that

opportunistic insider trades reveal private information. Using this idea, we compare varia-

tion in CPIEPIN and CPIEMech around opportunistic insider trades. Second, Hasbrouck

(1988, 1991a,b) point out that non-information related price changes (e.g. dealer inventory

control) should be subsequently reversed, while price moves from information related trades

should not. Hence, we analyze whether the relation between price reversals and CPIEPIN

is robust to controlling for CPIEMech.

We find that the mean difference between CPIEMech and CPIEPIN on the day that insid-

ers trade is -0.9% (on a mean CPIEPIN of 68%). Moreover, the relation between CPIEPIN

and price reversals disappears once we control for CPIEMech. Thus, the most popular

model of private information in the literature yields inferences about private-information

arrival that are no more reliable than simply looking at whether daily turnover is above or

below its mean.7 These results call into question the use of proxies based on the PIN model.

Despite the PIN model’s problems, all is not lost in the quest for intuitive measures of

information asymmetry based on structural models. Our second research question is whether

an alternative to the PIN model, developed by Odders-White and Ready (2008) (hereafter

OWR), is a viable substitute. We analyze the OWR model as an alternative to the PIN

model because, unlike the PIN model which uses only order flow, the OWR model identifies

the arrival of private information using intra-day and overnight returns along with order

imbalance.8 The intuition behind the OWR model is that the market maker only partially

updates prices during the day in response to an order flow shock. This comes about because

she is uncertain whether the abnormal order flow reflects the arrival of bona fide private

information or a noise trade shock. However, the subsequent overnight price pattern is

7The PIN model is based on the theoretical notion, originally developed by Glosten and Milgrom (1985),
that periods of informed trade can be identified by abnormally large absolute order flow imbalances. However,
we show that empirically the PIN model identifies private-information arrival from turnover and not from
absolute order flow imbalance.

8There are other structural models of private information that are based on order flow alone (e.g. Duarte
and Young (2009)). However, Back, Crotty, and Li (2014) and Kim and Stoll (2014) show evidence consistent
with the idea that order flow imbalance alone does not reveal private information.
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different depending on whether private information arrives or not. If a private-information

event occurs during the day, the overnight price response is a continuation of the intra-day

reaction as uncertainty about the arrival of private information is resolved overnight and

prices adjust to completely impound the now-public information. If no private information

arrives, the overnight price response is a reversal of the intra-day reaction. As a result,

the OWR model identifies private-information arrival from the interactions between order

imbalance, intra-day, and overnight returns, as well as their standard deviations.9

Similar to our analysis with the PIN model, we analyze whether the OWR model me-

chanically conflates the arrival of private information with turnover using regressions of

CPIEOWR on the Mechanical dummy. The average R2 in these regressions is around 3%.

This stands in contrast to the 65% R2 with CPIEPIN . Thus, unlike the PIN model, the

OWR does not identify private information mechanically from turnover. Naturally, this does

not mean that the OWR is necessarily a good model. Rather, it simply means that the OWR

model meets the ‘low bar’ of our uncontroversial working hypothesis that days of high (low)

turnover cannot all be considered private-information (no private-information) days.

To gain further insight, we examine the OWR model under two additional working hy-

potheses. The first of these additional hypothesis is that opportunistic insiders trade up

to the point that prices reveal their private information. Consistent with this hypothesis,

we find that CPIEOWR rises before opportunistic insider trades then drops immediately

afterward. The second working hypothesis is that private-information arrival is associated

with weaker future price reversals. Consistent with this hypothesis, we find that CPIEOWR

is related to smaller future return reversals.10 With the caveat that our examination of the

OWR model relies on two potentially controversial working hypotheses, our interpretation

of these results is that the OWR model is a promising alternative to the PIN model.

Our paper contributes to an emerging literature that uses daily measures of private infor-

mation. In a contemporaneous paper, Brennan, Huh, and Subrahmanyam (2015) examine

high-frequency measures of good and bad news in event study settings. In contrast, we use

9Many potential proxies for private information that are not based on structural models (e.g. bid-ask
spreads, impulse responses from structural VARs, and V PIN) have been analyzed in the literature (e.g.
Andersen and Bondarenko (2014)). We focus on structural models (the OWR and PIN models).

10Even though the calculation of the CPIEOWR uses returns, our return continuation tests are constructed
to avoid a mechanical relation between CPIEOWR and future returns. See further discussion in Section 3.
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CPIEPIN to shed light on how the PIN model identifies private information. A related

literature shows that the PIN model does not fit the order flow data well. For instance, Gan,

Wei, and Johnstone (2014) show that the PIN model poorly describes the empirical distri-

bution of order flow, while Duarte and Young (2009) argue that PIN is a biased measure of

private information because the PIN model does not match the positive covariance of buys

and sells. While these results are suggestive of problems with the PIN model, the fact that

it does not match some of the moments of the order flow distribution does not imply that

PIN fails to capture the variable of economic interest, namely private-information arrival.

We contribute to this literature because our tests focus directly on how the model identifies

private-information arrival by using CPIEPIN . Finally, we contribute to the extensive and

growing literature that employs measures of private information by showing that proxies

based on the OWR model can potentially replace the widely used PIN metric.

The remainder of the paper is as follows. Section 1 outlines the data we use for our

empirical results. Section 2 shows that the PIN model mechanically associates variation in

turnover with the arrival of private information. Section 3 evaluates the OWR model as an

alternative to the PIN model. Section 4 concludes.

1 Data

To estimate the PIN and OWR models, we collect trade and quote data for all NYSE stocks

between 1993 and 2012 from the NYSE TAQ database. We require that the firms in our

sample have only one type of common stock (i.e. a single PERMNO and share code 10 or 11),

are listed on the NYSE (exchange code 1), and have at least 200 days worth of non-missing

observations for the year. Our sample contains 1,060 stocks per year on average, of which

about 36% (25%) are in the top (bottom) three Fama-French size deciles. For each stock

in the sample, we classify each trade as either a buy or a sell, following the Lee and Ready

(1991) algorithm. Following the literature, we estimate the PIN model for each stock j using

a sample consisting of the number of buys and sells for each day (Bj,t and Sj,t). In our

regression analysis, we also use the daily absolute order flow imbalance (|Bj,t − Sj,t|), and

turnover (turnj,t = Bj,t + Sj,t).

The OWR model requires intra-day and overnight returns as well as order imbalance.
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Following OWR we compute the intra-day return on day t as the volume-weighted average

price (VWAP) during the trading day t minus the opening quote midpoint on day t plus

dividends issued on day t, all divided by the opening quote midpoint on day t. We compute

the overnight return on day t as the opening quote midpoint on day t+ 1 minus the VWAP

on day t, all divided by the opening quote midpoint on day t. Thus, the open-to-open return

from day t to day t+1 is the sum of the intra-day and overnight returns. We follow OWR by

removing systematic effects from returns to obtain measures of idiosyncratic overnight and

intra-day returns (ro,j,t and rd,j,t). We compute order imbalance (ye,j,t) as the daily share

volume of buys minus the share volume of sells, divided by the total share volume. Like

OWR, we remove days around unusual distributions or large dividends, as well as CUSIP or

ticker changes. We also drop days for which there are missing overnight returns, intra-day

returns, order imbalance, buys, or sells. See the Internet Appendix for further details.

There are two differences between our empirical procedures and those of OWR. First,

OWR estimate ye as the idiosyncratic component of order flow imbalance divided by shares

outstanding. We do not follow this procedure in defining ye because we find that it produces

noisy estimates. Specifically, we find that ye defined as shares bought minus shares sold

divided by shares outstanding, as in OWR, suffers from scale effects late in the sample,

when order flow is several orders of magnitude larger than shares outstanding. Second,

OWR remove a whole trading year of data surrounding distribution events, but we remove

only one trading week [-2,+2] around these events.

We also examine a sample of opportunistic insider trades, as defined in Cohen, Malloy,

and Pomorski (2012), from the Thomson Reuters’ database of insider trades. In order to

classify a trader as opportunistic or routine, we require three years of consecutive insider

trades. We classify a trader as routine if she places a trade in the same calendar month

for at least three years. All non-routine insiders’ trades are classified as opportunistic. Our

event sample includes 32,676 opportunistic insider trades.

Table 1 contains summary statistics for all the variables used to estimate the models.

Panel A gives summary statistics for our entire sample and Panel B displays the summary

statistics for opportunistic insider trading days.
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2 Does PIN mis-identify private information?

Section 2.1 describes the PIN model. Section 2.2 shows that the PIN model mechanically

identifies the arrival of private information from turnover. Section 2.3 demonstrates that the

PIN model yields inferences that are no more reliable than simply looking at whether daily

turnover is above or below its mean to identify private-information arrival.

2.1 Description and estimation of the PIN model

The Easley, Kiefer, O’Hara, and Paperman (1996) PIN model posits the existence of a

liquidity provider who receives buy and sell orders from both noise traders and informed

traders. Fig. 1 shows a tree diagram of the model. The intuition behind Fig. 1 is that at the

beginning of each day, informed traders receive a private signal with probability α. If the

informed traders receive no signal, they do not trade. Therefore, buy and sell orders arrive

at the normal rate of noise trade (εB for buys and εS for sells). If the informed receive a

signal (positive with probability δ and negative with probability 1− δ), they join the noise

traders and place orders with the market maker at the rate µ. These orders lead to larger

expected absolute order flow imbalances on days when the informed traders receive a signal.

Formally, let Bj,t (Sj,t) represent the number of buys (sells) for stock j on day t, ΘPIN,j =

(αj, µj, εBj
, εSj

, δj) be the vector of PIN model parameters for stock j, and DPIN,j,t =

[ΘPIN,j, Bj,t, Sj,t] be the vector of PIN model parameters together with the daily number

of buys and sells. The likelihood of observing a given number of buys and sells on day t

(L(DPIN,j,t)) is equal to the likelihood of observing Bj,t and Sj,t on a day without private

information (LNI(DPIN,j,t)), added to the likelihood of Bj,t and Sj,t on a day with positive

(LI+(DPIN,j,t)) as well as negative (LI−(DPIN,j,t)) information. Conditional on the informa-

tion event, Bj,t and Sj,t are independent Poisson random variables, hence:

LNI(DPIN,j,t) = (1− αj)e−εBj

ε
Bj,t

Bj

Bj,t!
e−εSj

ε
Sj,t

Sj

Sj,t!
(1)

LI+(DPIN,j,t) = αjδje
−(µj+εBj

) (µj + εBj
)Bj,t

Bj,t!
e−εSj

ε
Sj,t

Sj

Sj,t!
(2)

LI−(DPIN,j,t) = αj(1− δj)e−εBj

ε
Bj,t

Bj

Bj,t!
e−(µj+εSj

) (µj + εj,S)Sj,t

Sj,t!
(3)
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Let Ij,t be a dummy equal to one if the informed receive a private signal about stock j

on day t and zero otherwise. CPIEPIN,j,t is the econometrician’s posterior probability of

private-information arrival given the data observed on day t, and the PIN model parameters.

That is, CPIEPIN,j,t = P [Ij,t = 1|DPIN,j,t]. According to Bayes’ theorem:

CPIEPIN,j,t =
LI−(DPIN,j,t) + LI+(DPIN,j,t)

LI−(DPIN,j,t) + LI+(DPIN,j,t) + LNI(DPIN,j,t)
(4)

In the absence of buy and sell data, an econometrician would assign probability αj =

E[CPIEPIN,j,t] to the arrival of private information for stock j on day t, where the ex-

pectation is taken with respect to the joint distribution of Bj,t and Sj,t.

We estimate the PIN model numerically via maximum likelihood for every firm-year in our

sample. Specifically, we maximize
∏T

t=1 L(DPIN,j,t). Maximization of this likelihood function

is prone to numerical issues because of two features of the data. First, days with thousands

of buys and sells are common. As a result, attempting to directly compute the exponentials

and factorials in Equations 1 to 3 often generates values that are too large to be represented

by a typical computer. To address this problem we follow Duarte and Young (2009) and

compute LNI(DPIN,j,t), LI+(DPIN,j,t), and LI−(DPIN,j,t) by first computing their logarithms.

For instance, consider the computation of LNI(DPIN,j,t). Letting `NI=ln[LNI(DPIN,j,t)],

according to Equation 1 we have:

`NI = ln(1− αj)− εBj
+ ln(εBj

)×Bj,t −
Bj,t∑
k=1

ln(k)− εSj
+ ln(εSj

)× Sj,t −
Sj,t∑
k=1

ln(k) (5)

The computation of `NI as above does not result in numerical overflow problems even for

very large numbers of trades because Bj,t and Sj,t enter Equation 5 multiplicatively instead

of as exponents in Equation 1. Moreover, the negative terms in Equation 5 net out with

the positive terms, resulting in values of `NI that can be readily exponentiated to compute

LNI(DPIN,j,t). We compute LI+(DPIN,j,t), and LI−(DPIN,j,t) as the exponential of `I+ =

ln[LI+(DPIN,j,t)] and `I− = ln[LI−(DPIN,j,t)].

Second, the PIN model cannot match both the high level and volatility of order flow late

in the sample. As a result, the likelihood functions are very close to zero, which makes the

estimation susceptible to local optima. To get around this problem, we follow Duarte and

Young (2009) by maximizing the likelihood using ten different sets of starting points and
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choosing the parameter estimates associated with the largest final likelihood value. Moreover,

for our first set of starting points, we choose εB and εS values equal to the sample means of

buys and sells, α equal to 1%, δ equal to 50% and µ equal to the mean absolute value of

order flow imbalance. We do this in order to ensure that at least one of the starting points

is centered properly. The other nine starting points are randomized.

These same two features of the data also plague direct computation of CPIEPIN in

Equation 4 with numerical overflow and underflow problems. To address this problem we

first define `max = max{`NI , `I+ , `I−}. We then compute CPIEPIN as:

CPIEPIN,j,t =
e(`I+−`max) + e(`I−−`max)

e(`NI−`max) + e(`I+−`max) + e(`I−−`max)
(6)

The equation above handles days with thousands of buys and sells because it replaces direct

computation of the likelihoods (LNI(DPIN,j,t), LI+(DPIN,j,t), and LI−(DPIN,j,t)) with their

logs (`NI , `I+ , `I−). It also handles days when the denominator of Equation 4 is such a

small positive number that typical computer systems cannot distinguish it from zero. The

computation of CPIEPIN using Equation 6 avoids this problem because the denominator of

Equation 6 has a lower bound of one.

It is important to note that Equation 6 addresses a computational problem, not a math-

ematical problem. Equation 6 is not an approximation or an arbitrary normalization of

Equation 4. In fact, a simple algebraic manipulation shows that these expressions are equiv-

alent. Thus, Equation 6 is a mathematically-sound way to rewrite Equation 4 in order to

avoid computational problems that would lead to a large number of missing CPIEPIN ob-

servations. Indeed, direct computation of Equation 4 would result in the complete loss of all

CPIEPIN observations for the median stock by 2004.

Fig. 2 shows how the distribution of α changes over time. The PIN model α increases over

time, rising from about 30% in 1993 to 50% in 2012.11 Table 2 contains summary statistics for

the parameter estimates as well as the cross-sectional sample means and standard deviations

of CPIEPIN . These statistics show that, as expected, the mean CPIEPIN behaves like α.

11The increase in our PIN model α parameters is somewhat larger than that in Brennan, Huh, and
Subrahmanyam (2015). This small difference arises because we have a smaller number of stocks since
we apply sample filters similar to those in OWR. Without these filters, the increase in our PIN model α
parameters from 1993 to 2012 is comparable to that in Brennan, Huh, and Subrahmanyam (2015).
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We also estimate the parameter vector ΘPIN,j in the period t ∈ [−312,−60] before op-

portunistic insider trades. These parameter estimates are used to compute the CPIEs used

in our opportunistic insider trading event study. The summary statistics of the parameter

estimates for the event studies are similar to those in Table 2 and in Fig. 2.

2.2 How does the PIN model identify private information?

Section 2.2.1 uses a single stock, Exxon-Mobil, as an example of how the PIN model identifies

private information. Section 2.2.2 shows that the PIN model’s conflation of turnover with

private-information arrival is widespread in the cross section of stocks.

2.2.1 A single stock example

To illustrate how the PIN model conflates turnover with the arrival of private information,

Fig. 3 presents scatter plots of real and simulated buy and sell data for Exxon-Mobil. The

simulated data are generated from the PIN model using Exxon-Mobil’s estimated PIN model

parameters for 1993 and 2012. Panels A and B plot the simulated and real order flow for

Exxon-Mobil in 1993 and 2012 respectively, with buys on the horizontal axis and sells on

the vertical axis. Real data are marked as ‘+’, and simulated data as transparent dots.

The real data are shaded according to the value of CPIE, with darker points (+ magenta)

representing high CPIEs, and lighter points signifying (+ cyan) low CPIEs. Panels C and

D plot Exxon-Mobil’s CPIEPIN as function of turnover. The vertical lines in these panels

represent the annual mean of daily turnover.

The simulated data in Panels A and B of Fig. 3 illustrate the central intuition behind the

PIN model. The simulated data fall into three categories corresponding to the nodes of the

tree in Fig. 1. The data in these three categories create the distinct dark clusters in Panels

A and B. In each panel, two of the clusters are made up of days characterized by relatively

large absolute order flow imbalance, with a large number of sells (buys) and relatively few

buys (sells). These are private-information days. The third group of days has relatively low

numbers of buys and sells because there is no private-information arrival.

The real data, on the other hand, show no such distinct clusters. In Panel B of Fig. 3

the three simulated clusters from the PIN model rarely overlap with the data. Note that
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the diameter of the clusters reflects the amount of variation in buys and sells that the model

anticipates. Any day that falls outside the clusters appears to the model to be an extreme

event. Far from being restricted to Exxon-Mobil, this problem affects nearly all of the stocks

in our sample. Indeed, according to the PIN model, for the median stock about 60% of the

annual observations can reasonably be classified as outliers (L(DPIN,j,t) < 10−10) in 2005.12

Panels A and B also plot a dotted line representing the annual mean of daily turnover.

These lines, along with the CPIE color scheme for the observed data, suggest that the PIN

model mechanically identifies private information from turnover. To clarify this mechanical

identification, Panels C and D plot CPIEPIN as function of turnover. Panels C and D

show that the PIN model is essentially ‘sure’ that any day with turnover even slightly above

a particular threshold (near the mean) is a private-information day (i.e. CPIEPIN = 1).

On the other hand, any day with turnover below this threshold is classified as a day with

no private information (i.e. CPIEPIN = 0). Note that this mechanical identification of

private information does not necessarily relate to the possibility that informed traders may

sometimes choose to trade on days with high liquidity or turnover (see Collin-Dufresne and

Fos (2014)). Naturally, it is possible that informed traders do trade on some days with high

turnover. However, our point is that the PIN model mechanically identifies almost all days

with above average turnover as definitely private-information days and all days with below

average turnover as definitely no private-information days.

Fig. 3 also highlights the intuition of why the PIN model mechanically associates turnover

with private-information arrival. This conflation happens because of two limitations of the

model. Note from Fig. 1 that when the informed traders receive no signal, they do not

trade. Therefore, buy and sell orders arrive at the normal rate of noise trade and turnover

is distributed as Poisson with intensity εB + εS. If the informed receive a signal, they join

the noise traders in placing orders. Hence, turnover is distributed as Poisson with intensity

εB + εS +µ. Thus, under the PIN model, private-information arrival is necessarily the cause

of any increase in expected daily turnover. Second, the size of the simulated clusters relative

to the amount of variation in actual buys and sells indicates that the model’s assumption of a

12The consequences of this problem for the likelihood maximization and CPIEPIN calculation are dis-
cussed in Section 2.1.
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mixture of Poisson distributions, which have equal mean and variance, cannot accommodate

the large variance of turnover that we see in the data. Thus, turnover on any given day

tends to appear, to the model, to be either extremely high or extremely low (i.e. outside

the simulated clusters in Panels A and B of Fig. 3). As a result of these two limitations,

the model treats the vast majority of days when turnover is larger than the model expects

as private-information days and most of the days when turnover is smaller than the model

expects as no private-information days. That is, CPIEPIN mimics a dummy variable that

is equal to one when turnover is above some threshold (near the mean) and zero otherwise.

2.2.2 CPIEPIN as a function of turnover

Fig. 3 shows the intuition behind the PIN model’s mechanical identification of private-

information events for one stock. In this section, we show that the problem is widespread.

To do so, we first introduce the Mechanical model. The Mechanical model treats any day

with above (below) average turnover as a private-information (no private-information) day:

CPIEMech,j,t =

{
0, if turnj,t < turnj

1, if turnj,t ≥ turnj,
(7)

where turnj is the average daily turnover computed over the same sample period as we used

to compute the PIN model parameters.

To compare time series variation in CPIEPIN with variation in CPIEMech, we run

the regression CPIEPIN,j,t = β0,j + β1,j × CPIEMech,j,t + εj,t for each stock-year j in the

sample. For each stock j and day t, we calculate CPIEPIN,j,t and CPIEMech,j,t using data

and estimates of the PIN model parameters for the entire calendar year containing day t.

Naturally, market makers and traders do not have all of this information on day t. Therefore

CPIEPIN,j,t and CPIEMech,j,t cannot be used to set prices or conduct trading strategies.

However, they are useful to gauge the similarity between the PIN model and a mechanical

model of private-information arrival. Such an assessment is important to researchers who

do observe order flow, PIN model parameters, and turnover over their entire sample period

and thus can construct both measures for use in their work.

The results in Table 3 show that CPIEPIN is very closely approximated by the Mechan-

ical dummy. Note that since CPIEMech is a dummy variable, the intercept (β0,j) in the
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regression is the expected value of CPIEPIN when turnover is below the mean. Similarly,

the sum of the coefficients (β0,j + β1,j) is the expected value of CPIEPIN when turnover

is above the mean. The coefficient estimates reveal that for days with turnover below the

mean (CPIEMech = 0), the median stock’s CPIEPIN is close to zero, around 0.02 in 1993

and 0.12 in 2012. In contrast, for days with turnover above the mean (CPIEMech = 1),

CPIEPIN for the median stock is 0.66 (0.64 +0.02) in 1993, rising to 0.95 (0.12+0.83) in

2012. Furthermore, the median R2 is 58% in 1993, rising to nearly 70% in 2012. The average

median R2 across years is close to 65%.

The R2s in Table 3 also allow us to examine how pervasive the mechanical conflation

of private-information arrival with turnover is in the cross section. Stocks with the lowest

(highest) R2s are those for which variation in CPIEMech explains the least (most) variation

in CPIEPIN . To assess how this conflation varies in the cross section, we select six stocks

whose R2s are at the 5th, 50th, and 95th percentiles in 1993 and 2012. The values of these

R2s are indicated in Table 3. The six stocks are BXG (Bluegreen Corp.), EDBR (Edison

Brothers Stores Inc.), TEK (Tektronix.), JWN (Nordstrom Inc.), MLM (Martin Marietta

Materials Inc.), and VZ (Verizon Communications Inc.).

Fig. 4 presents plots of CPIEPIN as a function of turnover for all six stocks. Panel A

plots CPIEPIN as function of turnover for the stock at the 5th percentile in 1993 (BXG).

BXG is among the stocks for which CPIEPIN is least well described by the Mechanical

dummy. Even so, the PIN model assigns a probability larger than 99% to the arrival of

private information if turnover is above 47 trades and assigns a probability smaller than 2

basis points to any day with turnover less than 24 trades. This covers about 85% of the

trading days on which BXG traded in 1993. Panel B plots CPIEPIN as function of turnover

for the stock at the 5th percentile in 2012 (JWN). For JWN, any day with turnover below

8,751 trades is assigned a CPIEPIN of zero and any day with turnover above 10,088 trades

is assigned a CPIEPIN of one. This covers 85% of JWN’s trading days in 2012. The plots

for the stocks at the 50th and 95th percentiles are even more striking, particularly in 2012.

Table 3 and Fig. 4 indicate that CPIEPIN is very well approximated by CPIEMech, not

only for Exxon-Mobil, but also throughout the cross section. The approximation, however,

is not perfect. Therefore, a natural question is whether, despite the high R2s in Table
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3, CPIEMech oversimplifies the relation between CPIEPIN and turnover. To address the

possibility of a more complicated, non-linear relation between CPIEPIN and turn, we regress

CPIEPIN on turn, turn2, and CPIEMech.

Panel A of Table 4 displays the results of these regressions. The coefficients on CPIEMech,

turn and turn2 for the median stock are in general significant at the 1% level. However,

it is important to note that the interpretation of the coefficients (β0 and β1) from Table 3

does not carry over to Table 4 because CPIEMech is, by construction, mechanically related

to turn and turn2. That is, β0 is no longer the expected value of CPIEPIN when turnover

is less than its mean and the sum of the coefficients β0 + β1 is no longer the expected value

of CPIEPIN when turnover is greater than its mean. Moreover, the standardization of the

variables in Table 4 forces the intercept to zero. As such, we focus on the difference in the

R2s across Tables 3 and 4, which tells us the contribution of turn and turn2 relative to

CPIEMech in explaining variation in CPIEPIN . Specifically, the average median R2 across

all of the stock-years in Table 3 is close to 65%, while the average R2 in Panel A of Table

4 is 73%. This small difference of 8% in the average R2s indicates that turn and turn2 add

little to the explanatory power of CPIEMech, a simple dummy variable based on turnover.

Our interpretation for the high R2s in Panel A of Table 4 is that the PIN model mistakenly

identifies all variation in turnover due to disagreement, calendar effects, portfolio rebalancing,

and taxation as private-information arrival. However, one objection to this interpretation is

that while turnover varies for many reasons unrelated to the arrival of private information,

turnover can vary with the arrival of private information.

To address this objection, Panel B of Table 4 shows the results from regressions including

the absolute value of the intra-day stock return (|rd|) as a proxy for volatility. Volatility is

correlated with turnover and plausibly related to the arrival of private information. There-

fore, if the relation between CPIEPIN and turnover is simply due to the fact that the PIN

model captures the portion of variation in turnover that happens to be due to the arrival of

private information, then controlling for stock volatility in the regressions should attenuate

the coefficient estimates and increase the R2s from those in Panel A of Table 4. The results

in Panel B indicate that this is not the case. In fact, controlling for stock volatility increases

the average R2 for the median stock by only 0.18% over the 73% average R2 in Panel A.
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Naturally, volatility is not the only variable related to turnover and possibly related to

the arrival of private information. In fact, the PIN model suggests that the daily absolute

order flow imbalance (|B−S|) is related to private-information arrival. Moreover, recall that

the OWR model identifies private-information arrival from the interactions between order

imbalance, intra-day, and overnight returns, as well as their standard deviations. That is,

the OWR model suggests that the absolute values of intra-day and overnight returns (|rd|,

|ro|), the absolute value of order imbalance (|ye|) and the three associated interaction terms

(rd× ro, rd× ye and ro× ye) vary with private-information arrival. All of these variables are

also plausibly related to turnover.13 As in Panel B, the results in Panel C indicate that the

relation between CPIEPIN and turnover is not simply due to the fact that the PIN model

captures the portion of variation in turnover that happens to be due to the arrival of private

information. In fact, including all these controls increases the average R2 for the median

stock by only 4% over the 73% average R2 in Panel A.

Overall, our results strongly support the conclusion that the PIN model mechanically

identifies the arrival of private information from turnover. Even though the PIN model is

based on the theoretical implication that periods of informed trade can be identified by

abnormally large absolute order flow imbalance, empirically the PIN model violates this

notion. In fact, the simple Mechanical dummy explains most of the variation in CPIEPIN .

2.3 Does the PIN model produce reliable inferences?

To demonstrate that the PIN model’s inferences are unreliable due to the conflation of

turnover with private information, we compare CPIEPIN with CPIEMech in two settings

from the literature on private information: opportunistic insider trades and price reversals.

First, we show that CPIEPIN identifies opportunistic insider trades in the same way as

CPIEMech using the insider trade classification scheme developed in Cohen, Malloy, and

Pomorski (2012).14 There is a large literature that suggests that insiders may have private

13We also control for (|B − S|2) to address any potential non-linearities in the relation between |B − S|
and CPIEPIN . In unreported results, we use r2d, r2o and y2e as controls instead of |rd|, |ro| and |ye|. The
results are similar.

14See Section 1 for a further discussion of the classification of insider trades as opportunistic.
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information and may trade on that information.15 Cohen, Malloy, and Pomorski (2012) show

that a long-short portfolio that exploits the trades of opportunistic traders (opportunistic

buys minus opportunistic sells) earns value-weighted abnormal returns of 82 basis points

per month (9.8 percent annualized, t-statistic=2.15). They also show that opportunistic

insiders’ trades show significant predictive power for future news about the firm, and that

the fraction of opportunistic insiders in a given month is negatively related to the number

of recent news releases by the SEC regarding illegal insider trading cases. Opportunistic

insider trades therefore provide a convenient laboratory to show the consequences of the

PIN model’s conflation of turnover with private-information arrival.

Unlike a standard event study, we focus on variation in CPIE rather than price move-

ments. We estimate the PIN parameter vector, ΘPIN,j, in the period t ∈ [−312,−60] before

the event and then compute daily CPIEs based on market data for the period t ∈ [−20, 20]

surrounding the event. Prior studies (e.g Benos and Jochec (2007)) estimate the parameters

of the model in various windows around an event in order to compute PIN . Our proce-

dure is different in that we estimate the parameters of the PIN and the Mechanical model

one year prior to the event and then employ the estimated parameters as econometricians

observing the daily market data (i.e. buys and sells) and attempting to infer whether a

private-information event occurred.

Panel A of Fig. 5 shows the average CPIEPIN and CPIEMech in event time for our

sample of opportunistic insider trades. The average CPIEPIN is always slightly higher than

the average CPIEMech in Panel A. To better show the similarities between the variation

in CPIEPIN and CPIEMech in event time, Panel B of Fig. 5 plots the average change

in CPIEs from event day t − 1 to t (i.e. ∆CPIEPIN and ∆CPIEMech). Panel B shows

that the variation in CPIEPIN and CPIEMech around insider trading is nearly identical.

With both models, the probability of private-information arrival increases by about 2.5% on

the event day, decreases by 3.5% on the day after the insider trade, and thereafter slowly

decreases until it reaches a plateau 10 days after the event.

Table 5 presents the information in Panels A and B of Fig. 5 in tabular form. Specifically,

15See for instance Jaffe (1974), Seyhun (1986, 1998), Rozeff and Zaman (1988), Lin and Howe (1990),
Bettis, Vickery, and Vickery (1997), Lakonishok and Lee (2001), Kahle (2000), Ke, Huddart, and Petroni
(2003), Piotroski and Roulstone (2005), Jagolinzer (2009).
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on each event day, Table 5 shows the average of CPIEMech−CPIEPIN , and the average of

∆CPIEMech −∆CPIEPIN along with corresponding t-statistics. On the day of the insider

trade, the day with the largest difference between CPIEPIN and CPIEMech (-0.9%), a 95%

confidence interval for the difference is between -0.1% and -1.7%. Given that the average

CPIEPIN is 68% on event day zero, even the top limit of this confidence interval represents

an economically insignificant difference, albeit a precisely estimated one. Moreover, the

average differences in ∆CPIEs are small and indistinguishable from zero throughout the

entire event window.

A researcher unaware that the PIN model conflates turnover with private-information

arrival might view the pattern in CPIEPIN in Fig. 5 as indicative of the actual pat-

tern of private-information arrival around insider trades. However, the identical pattern

in CPIEMech suggests otherwise. The average CPIEMech on a particular day in event time

is, by construction, the fraction of stocks with turnover above the estimation period mean

daily turnover. Consequently, CPIEMech says nothing about the arrival of private infor-

mation per se. For instance, CPIEMech slowly decreases after insider trades because daily

turnover tends to slowly decline after opportunistic insiders trade. Therefore, the same pat-

tern in CPIEPIN around the event reflects the PIN model’s mechanical identification of

private-information arrival from turnover. Thus, far from suggesting actual variation in the

probability of informed trade, the results in Fig. 5 and in Table 5 indicate that the PIN

model produces inferences that are no more reliable than those from a heuristic that assigns

probability one (zero) to the arrival of private information when turnover is high (low).

Second, we examine the relation between CPIEPIN , CPIEMech and price reversals. The

market microstructure literature has long held that price changes related to informed trades

should be permanent, while non-information related price changes (e.g. those related to

dealer inventory control, price pressure, price discreteness, etc.) should be transient (e.g.

Hasbrouck (1988, 1991a,b)). Therefore, we examine the relation between CPIEPIN and

return autocorrelations. Specifically, we consider the following regression:

rj,t+1 = α + β1rj,t + β2CPIEj,t + β3(rj,t × CPIEj,t) + β4(rj,t ×Xj,t) + β5Xj,t + υj,t+1. (8)

In the above, rj,t is the open-to-open, risk-adjusted return (rd,j,t + ro,j,t) on day t for stock j,
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Xj,t is a vector of variables related to turnover (CPIEMech, turn, and turn2), and CPIEj,t

is either CPIEPIN,j,t or CPIEMech,j,t. These CPIEs are estimated using stock j data for

each calendar year. We estimate the regressions above using a panel regression approach.

Table 6 reports the results of these regressions. The negative coefficients on rj,t in each

of the regressions in Table 6 shows a tendency of daily returns to reverse. As we point out in

Section 1, we use quote mid-points instead of transaction prices to calculate stock returns.

Hence the negative coefficients on rj,t are not due to bid-ask bounce. The coefficient β3

measures the effect of the model’s CPIE on the correlation between the return on day t and

the return on the next trading day. The first two columns of Table 6 show that the estimates

for β3 are positive and significant for both CPIEPIN and CPIEMech. This suggests that

both CPIEs are associated with smaller future return reversals.

A researcher unaware of the conflation of turnover and the arrival of private information

in the PIN model could interpret the fact that β3 is positive and significant in Column 1 as

evidence that the PIN model captures the arrival of private information that has a persistent

impact on prices. However, the third and forth columns of Table 6 show that the damping

effect of CPIEPIN on return reversals disappears once we include CPIEMech, turn, and

turn2. This is problematic for many reasons, but particularly because turnover increases

upon public news and, unlike liquidity shocks, public news events should not be associated

with return reversals. Thus, as with insider trades, the PIN model performs no better in the

return reversals context than a simplistic heuristic.

In sum, the results in this section indicate that any proxy for private information based

on the PIN model, including PIN , necessarily produces misleading results. To see this,

note that the PIN of a stock is αµ/(αµ + εB + εS). Recall from Section 2.1 that α =

E[CPIEPIN,t]. Hence, CPIEPIN and PIN are linked via the unconditional probability of

private-information arrival, α. Consequently, given our results that CPIEPIN is no more

reliable than a simplistic heuristic, any proxy for private information based on the PIN model

(e.g. PIN or α) is equally unreliable.
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3 An alternative to the PIN model

This section analyzes the OWR model. Section 3.1 describes the model and Section 3.2 uses

the methods in Section 2.2 to analyze the OWR model.

3.1 Description and estimation of the OWR model

OWR extend Kyle (1985) to allow for days with and without private-information arrival.

Fig. 6 shows a time line for the events in the model. Under the OWR model, private

information arrives before the opening of the trading day with probability α. On days when

private information arrives, the model assumes that the information is publicly revealed

after the close of trade. Econometricians can make inferences about the probability of

private-information arrival under the OWR model because the covariance matrix of the three

variables (ye, rd, ro) differs between days with and without private-information arrival.16

To see how the covariance matrix of (ye, rd, ro) differs between private-information and no

private-information days, consider the covariance of the intra-day and overnight returns. This

covariance is positive on days with private-information arrival, reflecting the fact that the

information event is not completely captured in prices during the day. Thus, the revelation

of the private information after the close causes the overnight return to continue the partial

intra-day price reaction. In contrast, the covariance of the intra-day and overnight returns

is negative in the absence of private-information arrival since the market marker’s reaction

to the noise trade during the day is reversed overnight when she learns that there was no

private signal. The intuition for why the other elements of the covariance matrix of (ye, rd,

ro) differ between private-information and no private-information days is similar.

Formally, let ΘOWR,j = (αj, σz,j, σu,j, σi,j, σp,d,j, σp,o,j) be the vector of OWR parameters

for stock j. The parameter αj is the unconditional probability of private-information arrival

on any given day for stock j; σ2
z,j is the variance of the noise in the observed order imbalance

(ye,j); σ
2
u,j is the variance of the order imbalance from noise traders; σ2

i,j is the variance of

the private signal received by the informed traders; σ2
p,d,j is the variance of the public news

16Unlike the market maker who must update prices before observing the overnight revelation of informa-
tion, econometricians using the OWR model can make inferences about the arrival of private information
after viewing the overnight price response.
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component of the intra-day return; σ2
p,o,j is the variance of the public news component of the

overnight return. Let DOWR,j,t = [ΘOWR,j, ye,j,t, rd,j,t, ro,j,t] be the vector of model parameters

along with the order imbalance and the intra-day as well as overnight returns. The likelihood

function on a day without private-information arrival is LNI(DOWR,j,t) = (1−αj)N(0,ΣNI,j),

where N(0,ΣNI,j) is the normal density with mean zero and covariance matrix:

ΣNI,j =


σ2
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On the other hand, the likelihood function on a day with private-information arrival is

LI(DOWR,j,t) = αjN(0,ΣI,j), where the covariance matrix ΣI,j is:

ΣI,j =
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Let Ij,t be an indicator function with value one when private information arrives on day

t for stock j. As was the case for the PIN model, CPIEOWR,j,t is the econometrician’s

posterior probability of private-information arrival given the model parameters and the data

observed on that day (ye,j,t, rd,j,t, ro,j,t). That is, CPIEOWR,j,t = P [Ij,t = 1|DOWR,j,t]. Bayes’

theorem implies that CPIEOWR,j,t is given by:

CPIEOWR,j,t =
LI(DOWR,j,t)

LI(DOWR,j,t) + LNI(DOWR,j,t)
(11)

In the absence of order flow and return data, an econometrician would assign a probability

αj = E[CPIEOWR,j,t] to the arrival of private information for stock j on day t, where the

expectation is taken with respect to the joint distribution of the data vector (ye,j,t, ro,j,t, rd,j,t).

As with the PIN, we estimate the OWR model numerically via maximum likelihood.

Specifically, we maximize
∏T

t=1 L(DOWR,j,t), where L(DOWR,j,t) is the sum of LNI(DOWR,j,t)

and LI(DOWR,j,t). In contrast to the PIN model, we do not encounter any numerical issues

in directly computing either L(DOWR,j,t) or CPIEOWR with Equation 11.

Table 7 contains summary statistics for the OWR parameter estimates and CPIEOWR.

As with the PIN model, we see from Table 7 that the mean CPIEOWR behaves like α in
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the OWR model. Fig. 7 plots the time series of the estimated OWR α.17 We also estimate

the OWR model for each stock j in the period t ∈ [−312,−60] before opportunistic insider

trades. These parameter estimates are used to compute CPIEOWR in our event study using

insider trades. The summary statistics for the parameter estimates used in the insider trade

event study are similar to those in Table 7.

3.2 Assessing the OWR model

Table 8 presents results from time-series regressions of CPIEOWR on CPIEMech. In contrast

to Table 3, the results in Table 8 show that CPIEOWR is very poorly approximated by the

Mechanical dummy. Recall that since CPIEMech is a dummy variable, the intercept (β0)

in this regression is the expected value of CPIEOWR when turnover is below its mean.

Similarly, the sum of the coefficients (β0 + β1) is the expected value of CPIEOWR when

turnover is above its mean. For most years, β0 varies between 0.2 and 0.6, while β1 varies

between 0.01 and 0.07. Thus, on days with high turnover, the average CPIEOWR is not

substantially higher than on days with low turnover. Furthermore, the median R2s are low,

around 3% on average. These results indicate that the OWR model does not mechanically

conflate turnover and private-information arrival.

As with the PIN model, we also sort stocks based on their R2s in Table 8. The stocks

with the lowest (highest) R2s are those for which variation in CPIEMech explains the least

(most) of variation in CPIEOWR. Fig. 8 presents plots of CPIEOWR as function of turnover

for six stocks with R2s at the 5th, 50th, and 95th percentiles in 1993 and 2012. The values

of these R2s are indicated in Table 8. The six stocks are Cilcorp Inc (CER), Alexander

& Alexander Services (AAL), Alza Corp (AZA), Pioneer Natural Resources (PXD), Eagle

Materials (EXP), and T N S Inc (TNS). None of the plots in Fig. 8 reveal any apparent

mechanical relation between turnover and CPIEOWR.

Panel A of Table 9 shows the results from regressions including turn and turn2. In

contrast to the results in Table 4, CPIEMech, turn and turn2 explain little of the variation

in CPIEOWR. Indeed, the average R2 in Panel A is around 7%. Panel B presents the results

17Note that the estimated OWR α parameters are in general higher than those in OWR. This is due to
the fact that our definition of ye is different from that in OWR (see discussion in Section 1 above). In fact,
we get α estimates close to those reported in OWR if we define ye in the same way that they do.
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of regressions controlling for the absolute value of the intra-day return (|rd|). In contrast to

the results in Table 4, the inclusion of |rd| substantially increases the R2s in every year apart

from 2008. Indeed, the R2s in Panel B rise to around 45%, on average. Consistent with the

theory underlying the OWR model, this result indicates that a significant portion of private

information arrival identification in the OWR model comes from volatility. Panel C presents

the results of regressions controlling for the absolute value of the overnight returns and order

flow imbalance (|ro|, |ye|), the three associated interaction terms (rd×ro, rd×ye and ro×ye),

|B − S| and its square. The inclusion of these control variables dramatically increases the

R2s to around 85%, on average. In contrast to the PIN model, this suggests that turnover

plays little role in identifying private-information arrival under the OWR model. Instead,

the identification comes from the variables that the OWR model suggests are related to

private-information arrival.

In sum, the results in Tables 8 and 9 yield no evidence that inferences from the OWR

model are necessarily unreliable. To gain further insight into the OWR model’s performance,

we consider two additional working hypotheses in the context of opportunistic insider trades

and of return reversals.

Consider first the relation between CPIEOWR and opportunistic insider trades. Under

the working hypothesis that opportunistic insiders trade up to the point that prices reveal

their information, CPIEs should be higher coincident with opportunistic trades and decline

after the trades. Therefore, we examine CPIEOWR around opportunistic insider trades

(t ∈ [−20, 20]). As in Section 2.3, these are based on estimates of ΘOWR,j computed in the

period t ∈ [−312,−60] before the event.

Panel A of Fig. 9 presents the average CPIEOWR and CPIEMech in event time for our

sample of opportunistic insider trades, while Panel B of Fig. 9 presents the average changes

in CPIEs from event day t − 1 to day t (∆CPIEs). In contrast to the results in Fig. 5,

the average CPIEOWR as well as the average changes in ∆CPIEOWR are very different

from those of CPIEMech. Indeed, the results in Table 10 indicate that the mean differences

between CPIEMech and CPIEOWR as well as the mean differences between ∆CPIEMech and

∆CPIEOWR are often large and statistically different from zero. In Fig. 9, CPIEOWR rises

a few days before the insider trades, suggesting that whatever private signal the insider is
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responding to is also received and acted upon by others. Most importantly, unlike CPIEMech

(and thus CPIEPIN), CPIEOWR drops dramatically immediately after the trade. Hence,

variation in CPIEOWR is consistent with the idea that opportunistic insiders trade up to

the point that prices fully reveal private information.

Next we examine the relation of CPIEOWR with future return reversals. Specifically,

under the working hypothesis that private-information arrival is associated with weaker

price reversals, a credible model of private-information arrival should have a CPIE that

is associated with smaller future price reversals. Therefore, we estimate Equation 8, using

CPIEOWR. Before continuing, however, there are two issues worth clarifying. First, recall

that the independent variable in this regression is the open-to-open, risk-adjusted return (rj,t

= rd,j,t+ro,j,t) on day t. Thus, there is no overlap between the intra-day and overnight returns

that are used to compute CPIEOWR,j,t on day t and the return on day t+1. This is important

because if CPIEOWR,j,t and rj,t+1 were computed using overlapping data, then the relation

between them would be mechanical. Second, while the OWR model relies on rd,j,t × ro,j,t to

identify private-information arrival, it is a one-period model and has no predictions about

the relation between CPIEOWR,j,t and the correlation between rj,t and rj,t+1. That is, the

OWR model has implications about the relation between private-information arrival and the

covariance between intra-day and subsequent overnight return (rd,j,t and ro,j,t), but it has no

implication whatsoever about the covariance between the daily returns rj,t and rj,t+1. Thus,

for the regressions in this section we rely on our working hypothesis to yield implications for

the effect of private-information arrival on the covariance between the daily returns rj,t and

rj,t+1, not on the OWR model per se.

Table 11 reports the coefficient estimates and t-statistics for these regressions. Most

importantly, the results in Table 11 show that the estimate for β3 in the OWR model is

positive and significant, indicating that CPIEOWR is associated with smaller future return

reversals. Indeed, a one standard deviation shock to CPIEOWR is associated with a 27%

(2.416/8.881) decline in the subsequent reversal. For completeness, we also report the results

using CPIEMech. As expected, the β3 estimates for CPIEMech are very different from that

for CPIEOWR. Furthermore, controlling for CPIEMech as well as turn and turn2 does not

significantly change β3 estimates for CPIEOWR. This, along with the results in Table 9,
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suggests that CPIEOWR does not simply capture the effect of turnover (say due to public

news, for instance) on return reversals. On the contrary, the OWR model appears to capture

the arrival of private information with persistent impact on prices.

4 Conclusion

Our findings indicate that the PIN model mechanically groups all sources of variation in

turnover (e.g. disagreement, calendar effects, portfolio rebalancing, taxation, etc.) under

the umbrella of private-information arrival. Indeed, our results indicate that the PIN model

is no more useful in identifying private information than a mechanical model that assigns

probability one to the arrival of private information on days when turnover is above average

and zero to the arrival of private information on any other day. These findings indicate that

the most widely used measure of information asymmetry, PIN , is not reliable.

We also examine an alternative to the PIN model, the OWR model, which infers the

arrival of private information from returns and order flow. We find that the OWR model

does not mechanically identify private information from turnover. Furthermore, we present

results that suggest that the OWR model is able to capture the arrival of private information

in the context of opportunistic insider trades, and of return reversals. These results indicate

that the OWR model is a promising alternative to the PIN model. That being said, our

OWR results come with the caveat that they depend on potentially controversial working

hypotheses about the timing of the arrival of private information. Therefore, future research

examining the OWR model in different contexts is needed to make definitive conclusions

about the OWR model’s ability to identify private information.
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Table 1: Summary Statistics. This table summarizes the full sample and opportunistic insider
trading day returns, order imbalance as well as the number of buys (B) and sells (S). We compute
intraday and overnight returns as well as daily buys and sells for stocks between 1993 and 2012
using data from the NYSE TAQ database, CRSP and COMPUSTAT. Following OWR, we compute
the intraday return at time t as the volume-weighted average price at t (VWAP) minus the opening
quote midpoint at t plus dividends at time t, all divided by the opening quote midpoint at time t.
We compute the overnight return at t as the opening quote midpoint at t+1 minus the VWAP at t,
all divided by the opening quote midpoint at t. The intra-day (rd) and overnight (ro) returns are risk
adjusted using daily cross-sectional regressions of each return measure on a constant, historical beta
(based on the previous five years of monthly returns), the natural logarithm of market capitalization,
and the natural logarithm of the book-to-market ratio. We compute the order imbalance (ye) as
the daily total volume of buys minus total volume of sells, divided by the total volume. Our sample
of opportunistic insider trades is constructed using the method detailed in Cohen, Malloy, and
Pomorski (2011).

A. Full Sample

N Mean Std Q1 Median Q3

ye 5,286,191 2.766% 31.259% -10.433% 3.282% 18.996%
rd 5,286,191 -0.004% 1.500% -0.707% -0.024% 0.680%
ro 5,286,191 0.003% 1.297% -0.566% -0.024% 0.525%
B 5,286,191 1,876 6,917 37 220 1,128
S 5,286,191 1,843 6,894 36 194 1,033

B. Opportunistic Insider Trades

N Mean Std Q1 Median Q3

ye 32,676 4.980% 20.425% -5.106% 3.874% 15.353%
rd 32,676 0.151% 1.566% -0.632% 0.086% 0.865%
ro 32,676 0.056% 1.247% -0.467% 0.020% 0.528%
B 32,676 3,852 10,645 354 1,129 3,478
S 32,676 3,787 10,554 300 996 3,303



Table 2: PIN Model Parameter Estimates. This table summarizes the parameter estimates
for the PIN model. The sample consists of 21,206 firm-years from 1993 to 2012. The parameter
α is the unconditional probability of private-information arrival on a particular day. The param-
eter δ represents the probability of good news, and 1 − δ represents the probability of bad news.
The parameters εB and εS represent the expected number of daily buys and sells given no private
information, and µ is the expected increase in the number of trades given the arrival of private
information. CPIEPIN is the probability of private-information arrival on a particular day, condi-
tional on the PIN model parameters and the observed buys and sells. CPIE and Std(CPIE) are
the mean and standard deviation of CPIEPIN computed for each firm-year. In the table below, we
report the mean, standard deviation, first, second, and third quartiles for each parameter, CPIE
and Std(CPIE) across all firm-years.

N Mean Std Q1 Median Q3

α 21,206 0.372 0.122 0.291 0.375 0.445
δ 21,206 0.607 0.209 0.484 0.625 0.762
εB 21,206 1,625 5,388 33 193 1,039
εS 21,206 1,596 5,369 35 186 956
µ 21,206 312 593 43 160 314

CPIE 21,206 0.382 0.135 0.293 0.379 0.449
Std(CPIE) 21,206 0.451 0.052 0.427 0.470 0.490



Table 3: Regressions of CPIEPIN on the Mechanical Dummy. This table reports results from the regression:
CPIEPIN,j,t = β0 + β1 × CPIEMech,j,t + εj,t, where CPIEMech,j,t is a dummy variable equal to one if stock j’s turnover
on day t is greater than the mean daily turnover of stock j during the calendar year, and zero otherwise. We report median
coefficient and t-statistic estimates (in parentheses) as well as the 5th, 50th, 95th percentiles of R2 for each year in our sample.
We compute Newey-West standard errors with a lag length selected according to the Akaike Information Criterion (AIC) from
a regression of CPIEPIN on a constant, trend, and quadratic trend.

R2

β0 β1 5th 50th 95th

1993 0.019 (2.67) 0.638 (14.66) 29.18% 57.99% 75.20%
1994 0.022 (2.93) 0.644 (15.32) 28.87% 58.74% 74.66%
1995 0.017 (2.58) 0.635 (14.56) 26.08% 57.00% 74.21%
1996 0.021 (2.68) 0.656 (15.74) 29.64% 59.07% 73.73%
1997 0.019 (2.51) 0.668 (15.65) 31.49% 59.41% 77.26%
1998 0.018 (2.36) 0.685 (16.38) 35.37% 61.47% 79.79%
1999 0.022 (2.44) 0.693 (16.50) 32.63% 61.33% 78.41%
2000 0.018 (2.14) 0.721 (17.06) 34.27% 63.44% 82.20%
2001 0.033 (2.42) 0.776 (19.77) 49.31% 67.02% 81.75%
2002 0.040 (2.59) 0.812 (22.38) 50.69% 70.17% 83.84%
2003 0.045 (2.77) 0.802 (21.53) 51.96% 68.41% 81.38%
2004 0.041 (2.63) 0.818 (22.71) 54.63% 70.34% 83.12%
2005 0.050 (2.88) 0.841 (24.67) 53.07% 72.42% 85.66%
2006 0.065 (3.27) 0.856 (26.99) 34.54% 74.08% 88.21%
2007 0.191 (5.54) 0.792 (21.74) 23.17% 61.03% 89.14%
2008 0.166 (5.20) 0.808 (23.30) 19.65% 64.15% 92.00%
2009 0.127 (4.35) 0.823 (23.93) 24.57% 68.11% 91.98%
2010 0.122 (4.53) 0.842 (25.64) 23.67% 69.35% 89.89%
2011 0.173 (5.33) 0.797 (21.75) 19.37% 62.00% 89.76%
2012 0.119 (4.45) 0.831 (25.06) 24.49% 69.09% 88.81%



Table 4: Regressions of CPIEPIN on CPIEMech Including Other Variables. Panel A reports results from regressions
of CPIEPIN on CPIEMech, turn, and turn2. The variables turn and turn2 represent the daily sum of buys and sells and its
square, respectively. Panel B reports results from regressions of CPIEPIN on CPIEMech, turn, turn2, and |rd|. The variable
rd is the intra-day return. Panel C includes additional controls: |B − S|, |B − S|2, |ye|, |ro|, ye × rd, ye × ro, and rd × ro. The
variables B and S represent the daily number of buys and sells respectively. The variable ro is the overnight return and ye is
the order imbalance. We report median estimates, t-statistics (in parentheses), and R2 values for each year in our sample. All
coefficients are multiplied by 100. All variables are standardized. We compute Newey-West standard errors with a lag length
selected according to the AIC from a regression of CPIEPIN on a constant, trend, and quadratic trend.

A. Turnover Variables

CPIEMech turn turn2 R2

1993 31.7 (3.96) 83.7 (4.89) -35.2 (-2.59) 70.46%
1994 32.1 (4.10) 82.7 (4.90) -31.9 (-2.30) 71.36%
1995 31.3 (4.01) 82.4 (4.90) -34.8 (-2.46) 70.03%
1996 35.0 (4.49) 79.9 (4.83) -32.4 (-2.49) 70.19%
1997 35.5 (4.39) 79.2 (4.74) -33.6 (-2.66) 70.33%
1998 38.4 (4.76) 76.1 (4.43) -31.6 (-2.44) 71.25%
1999 38.4 (4.80) 79.6 (4.82) -38.0 (-2.99) 70.83%
2000 41.8 (5.09) 77.9 (4.72) -36.8 (-3.09) 71.95%
2001 50.0 (5.98) 66.0 (4.14) -30.7 (-2.70) 73.04%
2002 54.8 (6.73) 62.2 (3.90) -30.7 (-2.70) 74.89%
2003 55.6 (7.09) 59.8 (3.91) -31.6 (-2.87) 72.94%
2004 57.7 (7.27) 61.0 (3.86) -33.6 (-3.02) 74.38%
2005 59.9 (7.66) 64.7 (3.96) -38.6 (-3.41) 76.15%
2006 61.1 (7.85) 64.8 (4.08) -40.1 (-3.59) 77.38%
2007 36.5 (4.51) 120.1 (5.22) -87.4 (-4.23) 70.79%
2008 42.7 (5.25) 107.1 (5.16) -76.4 (-4.11) 72.85%
2009 51.0 (6.20) 81.7 (4.61) -56.4 (-3.91) 74.11%
2010 54.1 (6.90) 80.0 (4.60) -54.3 (-3.87) 74.19%
2011 42.6 (5.17) 104.4 (5.05) -76.4 (-4.09) 70.66%
2012 52.9 (6.60) 78.1 (4.53) -53.2 (-3.85) 74.07%
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B. Turnover Variables and Absolute Intra-day Return

CPIEMech turn turn2 |rd| R2

1993 31.5 (3.96) 82.4 (4.85) -35.1 (-2.57) 2.4 (0.60) 70.64%
1994 32.1 (4.12) 81.5 (4.89) -31.6 (-2.29) 1.7 (0.42) 71.66%
1995 31.2 (4.03) 81.3 (4.83) -34.1 (-2.45) 1.5 (0.37) 70.19%
1996 35.0 (4.49) 79.2 (4.77) -32.3 (-2.48) 1.7 (0.42) 70.38%
1997 35.6 (4.39) 78.2 (4.69) -34.0 (-2.62) 1.7 (0.44) 70.56%
1998 38.2 (4.81) 75.0 (4.37) -31.5 (-2.37) 2.0 (0.50) 71.50%
1999 38.4 (4.79) 78.1 (4.75) -37.7 (-2.99) 2.4 (0.59) 71.00%
2000 41.9 (5.09) 76.7 (4.63) -35.6 (-3.06) 1.5 (0.39) 72.26%
2001 50.1 (6.01) 65.7 (4.12) -30.3 (-2.67) 0.6 (0.19) 73.15%
2002 54.9 (6.78) 61.7 (3.86) -30.3 (-2.66) 0.4 (0.12) 75.09%
2003 55.4 (7.06) 60.1 (3.90) -31.4 (-2.83) -0.1 (-0.02) 73.13%
2004 57.8 (7.29) 61.0 (3.85) -33.5 (-3.00) 0.1 (0.02) 74.48%
2005 59.9 (7.65) 64.7 (3.94) -39.1 (-3.38) 0.2 (0.05) 76.23%
2006 61.1 (7.85) 65.0 (4.08) -39.7 (-3.58) -0.1 (-0.05) 77.45%
2007 36.7 (4.53) 121.2 (5.27) -88.1 (-4.26) -0.6 (-0.19) 71.02%
2008 42.5 (5.24) 107.1 (5.17) -76.0 (-4.13) -0.0 (-0.01) 73.03%
2009 50.9 (6.16) 81.6 (4.60) -56.2 (-3.93) 0.1 (0.04) 74.28%
2010 53.9 (6.87) 81.3 (4.60) -54.2 (-3.88) -0.3 (-0.11) 74.33%
2011 42.5 (5.16) 104.5 (5.05) -76.4 (-4.15) -0.2 (-0.07) 70.78%
2012 52.9 (6.54) 79.5 (4.55) -53.5 (-3.87) -0.4 (-0.15) 74.23%
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C. With All Control Variables

CPIEMech turn turn2 |rd| R2

1993 31.4 (4.61) 64.4 (3.77) -23.4 (-1.62) 0.4 (0.09) 76.68%
1994 31.8 (4.81) 63.6 (3.86) -20.5 (-1.41) 0.0 (0.00) 77.23%
1995 30.7 (4.51) 61.3 (3.71) -21.7 (-1.43) 0.3 (0.07) 75.37%
1996 34.7 (5.15) 61.3 (3.76) -21.6 (-1.53) 0.3 (0.07) 75.65%
1997 35.4 (4.94) 61.8 (3.77) -22.2 (-1.56) 0.2 (0.05) 75.77%
1998 37.6 (5.36) 58.9 (3.51) -21.3 (-1.56) 0.8 (0.21) 76.52%
1999 38.2 (5.37) 64.0 (3.92) -28.7 (-2.14) 0.9 (0.22) 75.68%
2000 40.9 (5.69) 60.4 (3.77) -26.1 (-2.08) 0.2 (0.05) 76.46%
2001 49.3 (6.83) 48.3 (3.34) -21.5 (-1.80) 0.5 (0.12) 77.95%
2002 54.4 (7.53) 48.3 (3.28) -22.9 (-1.93) -0.0 (-0.00) 78.82%
2003 54.7 (7.67) 48.5 (3.39) -25.7 (-2.24) -0.2 (-0.06) 76.59%
2004 57.3 (7.87) 52.0 (3.41) -29.1 (-2.48) -0.1 (-0.05) 77.82%
2005 59.5 (8.20) 55.2 (3.68) -34.4 (-2.95) -0.0 (-0.01) 79.16%
2006 61.2 (8.38) 57.5 (3.90) -37.8 (-3.36) -0.2 (-0.06) 79.77%
2007 36.0 (4.51) 118.5 (5.26) -88.3 (-4.43) -0.1 (-0.05) 73.04%
2008 42.3 (5.35) 101.1 (5.03) -72.8 (-4.18) 0.1 (0.04) 74.67%
2009 50.1 (6.51) 75.9 (4.48) -54.2 (-3.84) 0.3 (0.09) 76.54%
2010 53.8 (7.31) 72.6 (4.41) -52.8 (-3.84) -0.2 (-0.06) 77.00%
2011 41.8 (5.34) 99.5 (4.95) -75.0 (-4.25) -0.1 (-0.02) 73.39%
2012 52.5 (6.78) 70.1 (4.28) -49.9 (-3.78) -0.3 (-0.07) 76.76%



Table 5: Difference between CPIEMech and CPIEPIN around Insider Trades. This ta-
ble reports means and t-statistics (in parentheses) for the difference between CPIEMech and
CPIEPIN for a sample of days around opportunistic insider trades. The column labeled
CPIEMech − CPIEPIN presents the differences in the levels of CPIEs. The column labeled
∆CPIEMech −∆CPIEPIN presents the differences in the change in CPIEs between t and t− 1.

t CPIEMech − CPIEPIN ∆CPIEMech −∆CPIEPIN

-20 -0.002 (-0.499) 0.003 (0.784)
-10 -0.007 (-1.978) -0.001 (-0.324)
-5 -0.004 (-1.160) 0.000 (0.043)
-2 -0.006 (-1.686) 0.001 (0.224)
-1 -0.008 (-2.294) -0.002 (-0.656)
0 -0.009 (-2.391) -0.000 (-0.033)
1 -0.008 (-2.038) 0.001 (0.331)
2 -0.005 (-1.414) 0.002 (0.671)
5 -0.004 (-1.041) 0.003 (0.772)
10 -0.002 (-0.596) 0.003 (0.953)
20 -0.004 (-1.147) -0.002 (-0.670)



Table 6: Return Reversal Regressions with CPIEPIN . This table reports regressions of
the daily return at time t + 1 on the return at time t, CPIE (CPIEPIN or CPIEMech), and
their interaction. Returns are measured from open to open as the sum of the intraday (rd) and
overnight returns (ro). CPIEs are standardized. We include stock and year fixed effects and cluster
standard errors by stock and year. Coefficients are multiplied by 100, and t-statistics are reported
in parentheses. Stars indicate the statistical significance of the coefficient estimates at the 10, 5,
and 1% levels respectively.

(1) (2) (3) (4)

rt −7.235∗∗∗ −7.330∗∗∗ −7.327∗∗∗ −7.328∗∗∗
(−6.757) (−6.914) (−6.884) (−6.885)

CPIEPIN 0.021∗∗∗ 0.011∗∗∗ 0.011∗∗∗

(4.960) (3.944) (4.228)
CPIEMech 0.021∗∗∗ 0.013∗∗∗ 0.014∗∗∗

(5.110) (3.753) (4.040)
CPIEPIN × rt 0.610∗∗ −0.162 −0.248

(2.277) (−0.478) (−0.822)
CPIEMech × rt 0.882∗∗∗ 1.007∗∗∗ 1.032∗∗∗

(3.218) (2.811) (2.904)
turn −0.018∗∗∗

(−3.069)
turn2 0.0002∗

(1.877)
turn× rt 0.386∗

(1.928)
turn2 × rt −0.006∗∗

(−2.078)
R2 0.55% 0.55% 0.55% 0.56%
Observations 5,283,617 5,283,617 5,283,617 5,283,617



Table 7: OWR Parameter Estimates. This table summarizes the parameter estimates for the
OWR model. The sample consists of 21,206 firm-years from 1993 to 2012. The parameter α is
the unconditional probability of private-information arrival on a particular day. The parameter
σu represents the standard deviation of the order imbalance due to uninformed traders, which
is observed with normally distributed noise with variance σ2

z . The parameter σi is the standard
deviation of the informed trader’s private signal, while σpd and σpo are the standard deviations
of the public news component of the idiosyncratic intraday and overnight returns, respectively.
CPIEOWR is the probability of private-information arrival on a particular day, conditional on the
OWR model parameters and the observed market data. CPIE and Std(CPIE) represent the mean
and standard deviation of CPIEOWR computed for each firm-year. In the table below, we report
the mean, standard deviation, first, second, and third quartiles for each parameter, CPIE and
Std(CPIE) across all firm-years.

N Mean Std Q1 Median Q3

α 21,206 0.437 0.257 0.214 0.436 0.639
σu 21,206 0.075 0.068 0.022 0.062 0.109
σz 21,206 0.239 0.143 0.137 0.221 0.332
σi 21,206 0.030 0.286 0.013 0.021 0.027
σpd 21,206 0.010 0.005 0.006 0.009 0.012
σpo 21,206 0.006 0.004 0.004 0.006 0.008

CPIE 21,206 0.451 0.258 0.227 0.455 0.656
Std(CPIE) 21,206 0.137 0.047 0.109 0.142 0.171



Table 8: Regressions of CPIEOWR on the Mechanical Dummy. This table reports results from the regression:
CPIEOWR,j,t = β0 + β1 × CPIEMech,j,t + νj,t, where CPIEMech,j,t is a dummy variable equal to one if stock j’s turnover
on day t is greater than the mean daily turnover of stock j during the calendar year, and zero otherwise. We report median
coefficient and t-statistic estimates (in parentheses) as well as the 5th, 50th, 95th percentiles of R2 for each year in our sample.
We compute Newey-West standard errors with a lag length selected according to the AIC from a regression of CPIEOWR on a
constant, trend, and quadratic trend.

R2

β0 β1 5th 50th 95th

1993 0.612 (53.67) 0.063 (3.17) 0.39% 4.44% 12.90%
1994 0.608 (53.90) 0.056 (2.89) 0.28% 3.58% 12.17%
1995 0.601 (52.36) 0.061 (3.09) 0.25% 4.17% 12.24%
1996 0.581 (51.68) 0.061 (3.03) 0.31% 4.02% 11.85%
1997 0.570 (51.22) 0.060 (3.08) 0.19% 4.16% 12.07%
1998 0.501 (46.07) 0.076 (3.56) 0.74% 5.85% 13.88%
1999 0.571 (53.40) 0.068 (3.43) 0.73% 5.35% 14.08%
2000 0.610 (62.82) 0.054 (3.08) 0.18% 4.36% 13.27%
2001 0.467 (39.97) 0.047 (2.57) 0.08% 3.02% 10.87%
2002 0.480 (46.02) 0.050 (2.69) 0.11% 3.14% 10.00%
2003 0.387 (36.94) 0.041 (2.30) 0.05% 2.28% 9.20%
2004 0.295 (33.13) 0.042 (2.42) 0.05% 2.72% 8.91%
2005 0.209 (32.31) 0.040 (2.42) 0.11% 2.85% 8.54%
2006 0.248 (31.57) 0.034 (2.06) 0.02% 1.99% 7.06%
2007 0.199 (33.23) 0.039 (2.39) 0.11% 3.69% 11.77%
2008 0.294 (28.69) 0.009 (0.57) 0.02% 1.68% 9.56%
2009 0.281 (39.51) 0.024 (2.05) 0.03% 2.64% 9.84%
2010 0.201 (34.60) 0.022 (1.92) 0.03% 2.30% 8.92%
2011 0.222 (37.15) 0.031 (2.13) 0.02% 2.73% 8.64%
2012 0.162 (31.39) 0.024 (1.86) 0.02% 1.90% 8.12%



Table 9: Regressions of CPIEOWR on CPIEMech Including Other Variables. Panel A reports results from regressions
of CPIEOWR on CPIEMech, turn, and turn2. The variables turn and turn2 represent the daily sum of buys and sells and its
square, respectively. Panel B reports results from regressions of CPIEOWR on CPIEMech, turn, turn2, and |rd|. The variable
rd is the intra-day return. Panel C includes additional controls: |B − S|, |B − S|2, |ye|, |ro|, ye × rd, ye × ro, and rd × ro. The
variables B and S represent the daily number of buys and sells respectively. The variable ro is the overnight return and ye
is the order imbalance. We report median coefficient, t-statistic (in parentheses), and R2 values for each year of our sample.
Coefficients are multiplied by 100. All variables are standardized. We compute Newey-West standard errors with a lag length
selected according to the AIC from a regression of CPIEOWR on a constant, trend, and quadratic trend.

A. Turnover Variables

CPIEMech turn turn2 R2

1993 1.8 (0.19) 32.9 (1.29) -10.1 (-0.45) 8.57%
1994 0.3 (0.04) 31.2 (1.17) -5.0 (-0.27) 7.29%
1995 1.6 (0.17) 27.9 (1.08) -5.0 (-0.22) 8.12%
1996 2.2 (0.22) 27.1 (1.08) -4.9 (-0.26) 7.94%
1997 0.8 (0.09) 27.7 (1.08) -2.6 (-0.15) 8.83%
1998 2.7 (0.27) 30.1 (1.16) -4.2 (-0.18) 10.66%
1999 1.6 (0.16) 38.4 (1.45) -11.3 (-0.53) 10.55%
2000 0.7 (0.09) 33.3 (1.22) -8.5 (-0.42) 8.55%
2001 0.0 (-0.01) 22.3 (0.82) -0.4 (-0.03) 6.82%
2002 -0.2 (-0.04) 20.8 (0.77) 1.5 (0.09) 7.15%
2003 -1.0 (-0.12) 13.8 (0.55) 7.8 (0.35) 6.65%
2004 -1.5 (-0.17) 9.1 (0.33) 10.9 (0.41) 7.80%
2005 -1.9 (-0.22) 12.1 (0.43) 12.4 (0.44) 8.48%
2006 -1.8 (-0.19) 9.6 (0.39) 6.9 (0.28) 6.68%
2007 -1.0 (-0.10) 6.8 (0.26) 9.9 (0.40) 8.86%
2008 1.7 (0.17) -0.1 (-0.01) 4.8 (0.24) 3.52%
2009 -0.0 (-0.01) 9.1 (0.38) 5.3 (0.26) 5.87%
2010 -0.9 (-0.10) 8.7 (0.36) 4.8 (0.23) 5.81%
2011 0.1 (0.01) 13.4 (0.46) 0.4 (0.02) 5.98%
2012 -0.9 (-0.09) 11.6 (0.45) 1.5 (0.07) 5.38%

Table 9 – Continued on next page



B. Turnover Variables and Absolute Intra-day Return

CPIEMech turn turn2 |rd| R2

1993 1.1 (0.15) 8.6 (0.48) -9.7 (-0.62) 71.6 (11.41) 51.88%
1994 0.6 (0.08) 7.0 (0.37) -6.0 (-0.43) 69.9 (11.27) 49.83%
1995 1.3 (0.18) 5.2 (0.28) -6.4 (-0.40) 70.4 (11.30) 50.29%
1996 1.1 (0.16) 4.0 (0.23) -6.0 (-0.37) 71.4 (11.71) 51.51%
1997 0.6 (0.11) 5.9 (0.35) -6.9 (-0.47) 71.3 (11.44) 51.90%
1998 1.6 (0.21) 2.8 (0.17) -3.8 (-0.26) 70.9 (11.13) 52.79%
1999 1.0 (0.14) 7.5 (0.40) -8.4 (-0.50) 68.9 (11.21) 48.92%
2000 1.0 (0.14) 2.9 (0.17) -1.7 (-0.12) 63.1 (9.75) 42.40%
2001 0.0 (-0.02) 1.4 (0.09) 0.0 (-0.01) 67.2 (9.31) 47.89%
2002 0.0 (-0.00) -0.2 (-0.03) 1.4 (0.10) 66.2 (8.43) 46.28%
2003 -0.1 (-0.02) -1.0 (-0.07) 2.4 (0.12) 66.5 (7.72) 47.90%
2004 -0.3 (-0.06) -4.3 (-0.22) 7.4 (0.41) 67.4 (7.17) 50.02%
2005 -1.0 (-0.15) -5.1 (-0.27) 7.0 (0.39) 69.0 (6.96) 53.40%
2006 -0.3 (-0.07) -5.0 (-0.28) 5.5 (0.39) 69.3 (7.30) 51.65%
2007 -0.5 (-0.06) -9.9 (-0.47) 9.2 (0.48) 64.3 (5.02) 46.50%
2008 1.4 (0.14) -10.0 (-0.44) 6.1 (0.36) 10.5 (1.48) 6.03%
2009 0.4 (0.07) -10.5 (-0.51) 10.8 (0.58) 53.1 (4.76) 33.10%
2010 -0.9 (-0.14) -6.2 (-0.28) 6.7 (0.38) 57.0 (4.11) 39.24%
2011 -0.1 (-0.01) -6.4 (-0.29) 4.5 (0.26) 58.2 (4.46) 39.88%
2012 -0.1 (-0.01) -4.3 (-0.22) 6.3 (0.36) 57.7 (4.11) 42.35%
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C. With All Control Variables

CPIEMech turn turn2 |rd| R2

1993 0.7 (0.19) 5.8 (0.46) -8.2 (-0.60) 54.5 (8.96) 79.94%
1994 0.5 (0.14) 5.3 (0.39) -5.4 (-0.43) 52.8 (9.49) 80.86%
1995 1.3 (0.32) 3.4 (0.27) -4.1 (-0.36) 52.2 (9.36) 81.06%
1996 0.7 (0.17) 4.7 (0.36) -5.5 (-0.49) 52.8 (9.66) 81.89%
1997 0.3 (0.09) 4.0 (0.35) -5.1 (-0.44) 51.3 (9.69) 82.87%
1998 0.9 (0.24) 2.8 (0.27) -3.3 (-0.33) 52.6 (10.50) 84.85%
1999 0.8 (0.23) 3.0 (0.25) -3.8 (-0.35) 49.4 (10.02) 83.33%
2000 0.4 (0.13) 1.9 (0.19) -2.1 (-0.26) 45.9 (10.30) 84.74%
2001 -0.0 (-0.03) 0.6 (0.07) -1.0 (-0.12) 52.2 (11.16) 86.60%
2002 0.0 (-0.01) 0.1 (0.03) 0.0 (-0.00) 53.6 (11.79) 87.88%
2003 0.0 (0.01) -1.5 (-0.17) 1.0 (0.11) 58.3 (12.32) 87.89%
2004 -0.1 (-0.02) -3.5 (-0.36) 4.0 (0.38) 58.0 (10.96) 88.11%
2005 -0.3 (-0.09) -4.9 (-0.47) 5.6 (0.53) 55.0 (9.69) 87.94%
2006 -0.2 (-0.09) -2.4 (-0.26) 2.5 (0.30) 55.6 (10.11) 88.15%
2007 -0.1 (-0.02) -1.1 (-0.12) 2.3 (0.27) 45.0 (7.53) 88.97%
2008 0.1 (0.03) 0.5 (0.06) 0.0 (-0.01) 3.8 (1.55) 90.69%
2009 0.2 (0.08) -1.3 (-0.17) 1.9 (0.29) 38.1 (8.14) 90.27%
2010 -0.3 (-0.10) -0.5 (-0.07) 1.8 (0.25) 39.2 (5.79) 88.91%
2011 0.1 (0.03) -0.7 (-0.10) 1.5 (0.21) 40.6 (6.40) 89.96%
2012 -0.6 (-0.17) -1.5 (-0.18) 3.0 (0.37) 43.3 (6.02) 87.88%



Table 10: Difference between CPIEMech and CPIEOWR around Insider Trades. This
table reports means and t-statistics (in parentheses) for the difference between CPIEMech and
CPIEOWR for a sample of days around opportunistic insider trades. The column labeled
CPIEMech − CPIEOWR presents the differences in the levels of CPIEs. The column labeled
∆CPIEMech−∆CPIEOWR presents the differences in the change in CPIEs between t and t− 1.

t CPIEMech − CPIEOWR ∆CPIEMech −∆CPIEOWR

-20 0.223 (70.879) 0.007 (2.531)
-10 0.240 (76.863) 0.004 (1.357)
-5 0.262 (84.543) 0.000 (0.049)
-2 0.281 (91.316) 0.005 (1.805)
-1 0.282 (91.668) 0.001 (0.335)
0 0.305 (100.494) 0.023 (8.692)
1 0.279 (90.555) -0.026 (-9.806)
2 0.267 (86.124) -0.013 (-4.742)
5 0.249 (79.959) -0.002 (-0.750)
10 0.238 (75.921) 0.001 (0.507)
20 0.246 (78.288) -0.003 (-1.193)



Table 11: Return Reversal Regressions with CPIEOWR. This table reports regressions of
the daily return at time t + 1 on the return at time t, CPIE (CPIEOWR or CPIEMech), and
their interaction. Returns are measured from open to open as the sum of the intraday (rd) and
overnight returns (ro). CPIEs are standardized. We include stock and year fixed effects and cluster
standard errors by stock and year. Coefficients are multiplied by 100, and t-statistics are reported
in parentheses. Stars indicate the statistical significance of the coefficient estimates at the 10, 5,
and 1% levels respectively.

(1) (2) (3) (4)

rt −8.881∗∗∗ −7.330∗∗∗ −9.083∗∗∗ −9.246∗∗∗
(−6.864) (−6.914) (−6.892) (−7.112)

CPIEOWR 0.014∗∗∗ 0.011∗∗∗ 0.011∗∗∗

(4.368) (3.842) (3.851)
CPIEMech 0.021∗∗∗ 0.019∗∗∗ 0.021∗∗∗

(5.110) (4.982) (5.348)
CPIEOWR × rt 2.416∗∗∗ 2.347∗∗∗ 2.549∗∗∗

(4.157) (4.163) (4.575)
CPIEMech × rt 0.882∗∗∗ 0.550∗∗ 0.415∗∗

(3.218) (2.464) (1.995)
turn −0.016∗∗∗

(−2.748)
turn2 0.0001

(0.992)
turn× rt 0.936∗∗∗

(3.544)
turn2 × rt −0.014∗∗∗

(−3.788)
R2 0.61% 0.55% 0.62% 0.63%
Observations 5,283,617 5,283,617 5,283,617 5,283,617



Figure 1: PIN Model Tree. For a given trading day, private information arrives with probability
α. When there is no private information, buys and sells are distributed as Poisson random variables
with intensity εB and εS . Private information is good (bad) news with probability δ (1 − δ). The
expected number of buys (sells) increases by µ in case of good (bad) news arrival.
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Figure 2: Yearly α Parameter Estimates for the PIN Model. The solid black line represents
the median value, and the dashed lines represent the 5th, 25th, 75th, and 95th percentiles.
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Figure 3: PIN Model Example. This figure compares real and simulated data for Exxon-Mobil (XOM) in 1993 and 2012 from
the PIN model. In Panels A and B, the real data are marked as +. The real data are shaded according to the CPIEPIN , with
darker markers (+ magenta) representing high and lighter markers (+ cyan) low CPIEs. All the observations below (above) the
dashed lines have turnover below (above) the annual mean of daily turnover. High (low) probability states in the simulated data
appear as a dark (light) “cloud” of points. The PIN model has three states: no news, good news, and bad news. Panels C and
D plot the CPIEs for the real data as a function of turnover along with a dashed line indicating the mean turnover.
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Figure 4: CPIEPIN as Function of Turnover. Panels A, C, and E report data from 1993 for
the stocks at the 5th, 50th, and 95th percentiles (BXG, EDBR, and TEK respectively) of R2 from a
regression of CPIEPIN on CPIEMech (see Table 3). Panels B, D, and F show the same plots for
the stocks at the 5th, 50th, and 95th percentiles (JWN, MLM, and VZ respectively) of R2 in 2012.
The dotted lines represent the yearly mean of daily turnover.
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Figure 5: CPIEPIN around Insider Trades. This figure plots the average CPIEs in event time
surrounding opportunistic insider trades. Panel A plots the average CPIEMech and CPIEPIN .
Panel B plots the average change in CPIEMech and CPIEPIN between t and t − 1 (∆CPIE).
The solid line is the average for CPIEPIN and the dashed line is the average for CPIEMech.
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Figure 6: OWR Model Tree. In the OWR model, prior to markets opening, private information arrives with probability α.
Once markets open, investors submit their trades generating order imbalance (ye), and the intraday return (rd). After markets
close, private information becomes public and is reflected in the overnight return (ro). The variables (ye, rd, ro) are normally
distributed with mean zero. The covariance differs between days with private-information arrival, ΣI , and days without the
arrival of private information, ΣNI . When there is no private-information arrival, there is a price reversal in the overnight return
(cov(rd, ro) < 0) and when there is private-information arrival there is a continuation in the returns (cov(rd, ro) > 0).
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Figure 7: Yearly α Parameter Estimates for the OWRModel. The solid black line represents
the median value, and the dashed lines represent the 5th, 25th, 75th, and 95th percentiles.
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Figure 8: CPIEOWR as Function of Turnover. Panels A, C, and E report data from 1993 for
the stocks at the 5th, 50th, and 95th percentiles (CER, AAL, and AZA respectively) of R2 from a
regression of CPIEOWR on CPIEMech (see Table 8). Panels B, D, and F show the same plots for
the stocks at the 5th, 50th, and 95th percentiles (PXD, EXP, and TNS respectively) of R2 in 2012.
The dotted lines represent yearly mean of daily turnover.
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Figure 9: CPIEOWR around Insider Trades. This figure plots the average CPIEs in event
time surrounding opportunistic insider trades. Panel A plots the average CPIEOWR (left axis) and
CPIEMech (right axis). Panel B plots the average change in CPIEMech and CPIEOWR between t
and t−1 (∆CPIE). The solid line is the average for CPIEOWR and the dashed line is the average
for CPIEMech.

A. CPIEOWR and CPIEMech

20 15 10 5 0 5 10 15 20
t

0.362

0.364

0.366

0.368

0.370

0.600

0.620

0.640

0.660

0.680

B. ∆CPIEOWR and ∆CPIEMech

20 15 10 5 0 5 10 15 20
t

0.03

0.02

0.01

0.00

0.01

0.02



Internet Appendix: Does the PIN model mis-identify
private information and if so, what is the alternative?
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A Estimating order flow, ro,j,t and rd,j,t

Wharton Research Data Services (WRDS) provides trades matched to National Best Bid

and Offer (NBBO) quotes at 0, 1, 2, and 5 second delay intervals. We use only “regular

way” trades, with original time and/or corrected timestamps to avoid incorrect quotes or

non-standard settlement terms. For instance, trades that are settled in cash or settled the

next business day.1 Prior to 2000, we match “regular way” trades to quotes delayed for 5

seconds; between 2000 and 2007, we match trades to quotes delayed for 1 second; and after

2007, we match trades to quotes without any delay.

We classify the matched trades as either buys or sells following the Lee and Ready (1991)

algorithm, which classifies all trades occurring above (below) the bid-ask mid-point as buyer

(seller) initiated. We use a tick test to classify trades that occur at the mid-point of the

bid and ask prices. The tick test classifies trades as buyer (seller) initiated if the price was

above/(below) that of the previous trade.

The OWR model requires intra-day and overnight returns. Following OWR we compute

the intra-day return on day t as the volume-weighted average price (VWAP) during the

trading day t minus the opening quote midpoint on day t plus dividends issued on day t,

all divided by the opening quote midpoint on day t. We compute the overnight return on

day t as the opening quote midpoint on day t+ 1 minus the VWAP on day t, all divided by

the opening quote midpoint on day t. The opening quote midpoint is not available in TAQ

in many instances. When the opening quote midpoint is not available, we use the matched

quote of the first trade in the day as a proxy for the opening quote.

We follow OWR by removing systematic effects from returns to obtain measures of id-

iosyncratic overnight and intra-day returns (ro,j,t and rd,j,t). To estimate ro,j,t and rd,j,t, we

run daily cross-sectional regressions of overnight and intraday returns on a constant, his-

torical β (based on the previous 5 years of monthly CRSP returns), log market cap, log

book-to-market (following Fama and French (1992), Fama and French (1993), and Davis,

Fama, and French (2000)). We impose min/max values for book equity (before taking logs)

of 0.017 and 3.13, respectively. If book equity is negative, we set it to 1 before taking logs, so

1Trade COND of (“@”,“*”, or “ ”) and CORR of (0,1)

1



that it is zero after taking logs. We use the residuals from these daily cross-sectional regres-

sions, winsorized at the 1 and 99% levels as our idiosyncratic intraday (rd,j,t) and overnight

(ro,j,t) returns.
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