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Abstract

We investigate whether the Easley and O’Hara (1987) PIN model mis-identifies
private information from variation in turnover. We find that the PIN model is no more
useful in identifying private information arrival than simply looking at whether turnover
is above average or not. This calls into question the PIN as a measure of private
information since turnover varies for many reasons unrelated to private information
arrival. We also examine two alternatives to the PIN model, the Generalized PIN
model (GPIN) and the Odders-White and Ready (2008) model (OWR). Our tests do
not reveal any problems with these two models’ ability to identify private information,
but indicate that the OWR model performs somewhat better.
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The Probability of Informed Trade (PIN) model, developed in a series of seminal papers

including Easley and O’Hara (1987), Easley, Kiefer, O’Hara, and Paperman (1996), and

Easley, Kiefer, and O’Hara (1997) is extensively used in accounting, corporate finance and

asset pricing literatures as a measure of information asymmetry.1 The PIN model is based

on the notion, originally developed by Glosten and Milgrom (1985), that periods of informed

trade can be identified by abnormally large absolute order flow imbalances.2 Recently, how-

ever, several papers have documented the perhaps puzzling fact that PIN is higher after

public news announcements than before (e.g. Aktas, de Bodt, Declerck, and Van Oppens

(2007), Benos and Jochec (2007), and Collin-Dufresne and Fos (2015)). All of these pa-

pers are informative in that they suggest potential problems with the PIN model. As yet,

however, there remains no definitive test of the PIN model’s ability to capture private infor-

mation arrival because the arrival of private information is inherently unobservable. Thus,

any test of a model of private information arrival is, in e↵ect, a joint hypothesis test. For

instance, in the context of earnings announcements, the PIN model has been tested using the

working hypothesis that the arrival of private information is more likely before an earnings

announcement than after it. It is possible however that agents convert public information

into private signals using superior analysis (e.g. Kim and Verrecchia (1994, 1997)). In such

a case, a higher PIN after an earnings announcement would indicate that PIN is properly

capturing private information. Therefore, this a joint test of the e�cacy of the model along

with a test of the working hypothesis about the timing of the arrival of private information.

Our first research question is whether PIN mis-identifies the arrival private information.

This is an important question because of the widespread use of PIN throughout the financial

economics and accounting literature. To address this research question, we create a variable

called the Conditional Probability of an Information Event (CPIE). To compute the CPIE

1A Google scholar search reveals that this series of PIN papers has been cited more than 3,500 times as of
this writing. Recent examples of papers that use PIN in the finance and accounting literature include Chen,
Goldstein, and Jiang (2007), Duarte, Han, Harford, and Young (2008), Bakke and Whited (2010), Da, Gao,
and Jagannathan (2011), Ferreira, Ferreira, and Raposo (2011), Akins, Ng, and Verdi (2012), Brennan, Huh,
and Subrahmanyam (2015), and Bennett, Garvey, Milbourn, and Wang (2017).

2Following the literature we define absolute order flow imbalance as the absolute value of the di↵erence
between the number of buyer initiated trades and the number of seller initiated trades. In what follows, we
refer to buyer initiated trades as ‘buys’, seller initiated trades as ‘sells’, and turnover as the number of buys
plus sells.
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implied by the PIN model (CPIEPIN), we estimate the PIN model’s parameters using an

entire year of data, and then use the observed market data (i.e. buys and sells) to estimate

the posterior or model-implied probability of an information event for each day in our sample.

We then test the PIN model by examining whether CPIEPIN is mechanically driven by

turnover, using the working hypothesis that turnover varies for myriad reasons unrelated to

private information.3 Our test is therefore also a joint hypothesis test. However, unlike the

working hypotheses about the timing of the arrival of private information that have been

used in the extant literature, the idea that turnover varies for reasons unrelated to private

information arrival is uncontroversial. For instance, turnover can increase due to disagree-

ment (e.g. Kandel and Pearson (1995), and Banerjee and Kremer (2010)). Turnover is also

subject to calendar e↵ects because traders coordinate trade on certain days to reduce trad-

ing costs (Admati and Pfleiderer (1988)). Furthermore, turnover can vary due to portfolio

rebalancing (Lo and Wang (2000)) and taxation reasons (Lakonishok and Smidt (1986)).

We find that the PIN model primarily identifies information events based on turnover,

controlling for absolute order flow imbalance. In regressions of CPIEPIN on absolute order

imbalance, turnover, and their squared terms, turnover and turnover squared account for, on

average, around 65% of the overall R2. Two limitations of the PIN model combine to create

this problem. First, under the PIN model, increases in expected turnover can only come

about through the arrival of private information.4 Second, the PIN model cannot match

both the mean and the variance of turnover due to its restrictive distributional assumptions.

As a result of these limitations, when confronted with actual data, the model mechanically

interprets periods of above average turnover as periods of private information arrival. The

identification of information events from turnover becomes more pronounced late in the

sample with the increase in both the level and variance of turnover. For example, after 2002,

our results indicate that the most popular model of private information in the literature, the

PIN model, yields inferences that are no more useful than simply looking at whether daily

volume is above or below the mean to identify information events.

3Theoretically, the PIN model identifies periods of informed trade with abnormally large absolute or-
der flow imbalances. Empirically, however, the PIN model may actually identify private information from
turnover and not from order imbalance.

4In the PIN model, turnover varies even without the arrival of private information. Expected turnover,
however, varies only with the arrival of private information.
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To demonstrate how the conflation of turnover with private information is consequential

to the broader finance and accounting literature, we consider a setting from the literature

that uses the PIN model in an event study context. Specifically, Benos and Jochec (2007)

find that PIN is higher after earnings announcements than before. They interpret their

findings as evidence that PIN fails to identify private information. In contrast, in a contem-

poraneous paper, Brennan, Huh, and Subrahmanyam (2015) find that a measure similar to

CPIEPIN is higher after earnings announcements, and interpret their results as indicating

that private information arrival is indeed higher after earnings announcements (and merger

announcements).5 Our event study findings resolve the impasse between the di↵erent in-

terpretations of Benos and Jochec (2007) and Brennan, Huh, and Subrahmanyam (2015)

because they indicate that higher PIN or CPIEPIN after earnings announcements can be

simply attributed to the fact that turnover is typically much higher after earnings announce-

ments.6 This example is emblematic of a pervasive issue in the literature since the PIN

model ultimately yields unclear inferences about private information arrival.

Despite the PIN model’s mechanical conflation of turnover with information arrival, all

is not lost in the quest for intuitive measures of information asymmetry based on structural

models. The second main contribution of this paper is to analyze two alternatives to the

PIN model that break the link between volume and private information. The first is a highly

tractable generalization of the PIN model (the GPIN model) that we develop, which relies

only on order flow to identify private information. The second is a model developed by

Odders-White and Ready (2008) (the OWR model), which uses price impacts along with

order flow to identify private information.

Even though there are many measures of private information in the literature, there are

at least two reasons why it is interesting to focus on the OWR and the GPIN models.7 First,

5While they do not consider earnings announcements, Aktas, de Bodt, Declerck, and Van Oppens (2007)
show that PIN is higher after merger announcements. They interpret this finding as a failure of PIN to
capture private information. In contrast to Benos and Jochec (2007) and Aktas, de Bodt, Declerck, and
Van Oppens (2007) we use CPIEPIN to conduct this event study instead of PIN .

6The literature suggests that turnover remains high after earnings announcements for many reasons
unrelated to the arrival of private information (e.g Bamber, Barron, and Stevens (2011)).

7There are many measures of private information that are not based on structural models (e.g. bid-ask
spreads, impulse responses from structural VARs, and V PIN). For reasons of space, we focus on measures
of private information that are based on structural models. Moreover, some of these measures have been
carefully analyzed in the literature (e.g. Andersen and Bondarenko (2014)).
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we focus on two structural models that do not conflate turnover and private information.8

Second, our choices of alternatives to the PIN model include one that is based on order flow

alone (the GPIN model) and another which uses order flows and returns (the OWR model).

On one hand, Easley, Kiefer, and O’Hara (1997) emphasize the need for private information

proxies that are computed using order flow alone.9 On the other hand Back, Crotty, and Li

(2014) and Kim and Stoll (2014) show evidence consistent with the idea that order imbalance

alone does not reveal private information. Therefore our choices of alternatives to the PIN

model span both branches of this literature.

As neither the GPIN and OWR models su↵er from the mechanical conflation of turnover

and private information arrival, to examine their performance we cannot rely on the working

hypothesis that turnover varies for many reasons unrelated to private information arrival.

We therefore use the GPIN and OWR CPIEs (CPIEGPIN and CPIEOWR) to diagnose

potential problems with the GPIN and OWR models’ ability to identify private information

arrival in the context of insider trades and price continuation. Cohen, Malloy, and Pomorski

(2012) propose a method to identify instances of opportunistic insider trades. Their results

show that these trades are profitable, suggesting they reveal private information. Therefore,

one criterion to see if a model correctly identifies informed trade, is to examine the variation

of its CPIE around opportunistic trades. Specifically, under the working hypothesis that

opportunistic insiders will trade up to the point that prices reveal their information, CPIEs

should be higher coincident with opportunistic trades and decline after the trades. Fur-

thermore, Hasbrouck (1988, 1991a,b) point out that non-information related price changes

(e.g. dealer inventory control) should be subsequently reversed, while information related

trades should not. Therefore, under the working hypothesis that private information arrival

is associated with weaker price reversals, CPIEs should be associated with smaller future

price reversals if the model properly identifies private information arrival.10 Both of these

tests rely on working hypotheses that are not as strongly established in the literature as the

8Easley, Engle, O’Hara, and Wu (2008) and Duarte and Young (2009) develop measures of private infor-
mation based on structural models. We show in Internet Appendices A and B that these two models also
identify private information from turnover in the later part of our sample period.

9Easley, Kiefer, and O’Hara (1997) regress prices on measures analogous to CPIEPIN . They point out
that their results are not mechanical because the PIN model is based only on order flow.

10Even though the calculation of the CPIEOWR uses returns, our return continuation tests are constructed
to avoid a mechanical relation between CPIEOWR and future returns. See further discussion in Section 3.
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hypothesis that turnover varies for reasons unrelated to private information. Thus, these

tests cannot be considered definitive. However, they are informative because they can at

least suggest problems with the models’ ability to identify private information.

Our results suggest that the OWR model performs in our tests somewhat better than

the GPIN model. The superior performance of the OWR model is perhaps not surprising

given that it uses returns and order flow data. In their totality, however, our results suggest

that the GPIN model is a promising alternative to the PIN model that relies on order flow

alone. On the other hand, if relying on order flow alone is not a requirement, then measures

of private information based on the OWR model are promising alternatives to PIN .

Collin-Dufresne and Fos (2015) show that PIN and other measures of adverse selection

are lower when Schedule 13D fillers trade and conclude that these measures may fail to

capture informed trading when informed traders can select when and how to trade. The

failure of the PIN model that we document is more general than that in Collin-Dufresne

and Fos (2015) because we show that the PIN model su↵ers from a pervasive problem that

extends well beyond failing to identify informed trade under certain circumstances. Another

group of papers in this literature have shown that the PIN model does not fit the order flow

data well. For instance, Gan, Wei, and Johnstone (2014) show that the distribution of order

flow used in the PIN model poorly describes the empirical distribution of order flow, while

Duarte and Young (2009) argue that PIN is a biased measure of private information because

the PIN model does match the positive covariance of buys and sells.While these results are

suggestive of problems with the PIN model, the fact that it does not match some of the

moments of the order flow distribution does not imply that PIN fails to capture the variable

of economic interest – private information arrival. We contribute to this group of papers

because our tests focus on a direct measure of how the model identifies private information

arrival (CPIEPIN). Moreover, our results also add to the debate (e.g. Back, Crotty, and Li

(2014)) of whether models of private information based on order flow alone perform as well

as those based on order flow and returns. In particular, we provide preliminary evidence

that models based on returns in addition to order flow (OWR) may perform better than

models based on order flow alone (GPIN). Finally, we also contribute to the literature that

uses measures of private information by showing that proxies based on the OWR and GPIN
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models can potentially replace the widely used PIN metric.

The remainder of the paper is as follows. Section 1 outlines the data we use for our

empirical results. Section 2 shows that the PIN model mechanically associates variation in

turnover with the arrival of private information. Section 3 generalizes the PIN model to deal

with this shortcoming and evaluates a model based on order flow imbalance alone (GPIN)

alongside another model that identifies private information from both returns and order flow

(OWR). Section 4 concludes.

1 Data

To estimate the PIN, GPIN, and OWR models, we collect trades and quotes data for all

NYSE stocks between 1993 and 2012 from the NYSE TAQ database. We require that the

stocks in our sample have only one issue (i.e. one PERMNO), are common stocks (share code

10 or 11), are listed on the NYSE (exchange code 1), and have at least 200 days worth of

non-missing observations for the year. Our sample contains 1,060 stocks per year on average.

Despite our sample selection criteria, about 36% (25%) of the stocks in our sample are in the

top (bottom) three Fama-French size deciles. For each stock in the sample, we classify each

day’s trades as either buys or sells, following the Lee and Ready (1991) algorithm. Internet

Appendix C describes the computation of the number of buys and sells.

We estimate both the PIN and GPIN models using only the daily number of buys and

sells (Bi,t and Si,t). The OWR model, however, also requires intraday and overnight returns

as well as order imbalances. Following Odders-White and Ready (2008) we compute the

intraday return at day t as the volume-weighted average price (VWAP) at t minus the

opening quote midpoint at t plus dividends at time t, all divided by the opening quote

midpoint at time t.11 We compute the overnight return at t as the opening quote midpoint

at t + 1 minus the VWAP at t, all divided by the opening quote midpoint at t. The total

return, or sum of the intraday and overnight returns is the open-to-open return from t to

t + 1. We compute order imbalance (ye) as the daily share volume of buys minus the share

11The opening quote midpoint is not available in TAQ in many instances. When the opening quote
midpoint is not available, we use the matched quote of the first trade in the day as a proxy for the opening
quote.
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volume of sells, divided by the total share volume. We follow Odders-White and Ready

and remove systematic e↵ects from returns to obtain measures of unexpected overnight and

intraday returns (ro,i,t and rd,i,t). See Internet Appendix C for details.

Like Odders-White and Ready (2008), we remove days around unusual distributions or

large dividends, as well as CUSIP or ticker changes. We also drop days for which we are

missing overnight returns (ro,i,t), intraday returns (rd,i,t), order imbalance (ye), buys (B),

or sells (S). Our empirical procedures follow those of Odders-White and Ready with two

exceptions. First, OWR estimate ye as the idiosyncratic component of net order flow divided

by shares outstanding. We do not follow the same procedure as OWR in defining ye because

we find that estimating ye as we do results in less noisy estimates. Specifically, we find

that ye defined as shares bought minus shares sold divided by shares outstanding, as in

Odders-White and Ready (2008), su↵ers from scale e↵ects late in the sample, when order

flow is several orders of magnitude larger than shares outstanding. Second, Odders-White

and Ready remove a whole trading year of data surrounding distribution events, but we only

remove one trading week [-2,+2] around these events.

For the event study portion of our analysis, we examine earnings announcements. Our

sample of earnings announcements includes all CRSP/COMPUSTAT firms listed in NYSE

between 1995–2009 for which we have exact timestamps collected from press releases in

Factiva which fall within a [-1,0] window relative to COMPUSTAT earnings announcement

dates following Dong, Li, Ramesh, and Shen (2015). Because we have exact timestamps for

the earnings announcements, we can cleanly separate between the pre and post event periods,

thus avoiding ambiguity about when exactly the information becomes public. We use only

earnings that are announced after the market is closed. We remove all announcements

occurring on non-trading days. Our final sample includes 21,979 earnings announcements.

We also examine a sample of opportunistic insider trades, as defined in Cohen, Malloy,

and Pomorski (2012), from the Thomson Reuters’ database of insider trades. In order to

classify a trader as opportunistic or routine, we require three years of consecutive insider

trades. We classify a trader as routine if she places a trade in the same calendar month

for at least three years. All non-routine traders’ trades are classified as opportunistic. Co-

hen, Malloy, and Pomorski (2012) show that opportunistic insider trades predict abnormal
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returns, information events, and regulator actions, which is consistent with the presence of

private information. Our event sample includes 32,676 opportunistic insider trades.

Table 1 contains summary statistics of all the variables used to estimate the models.

Panel A gives summary statistics of our entire sample, Panel B displays the summary statis-

tics for the days of earnings announcements, and Panel C displays the summary statistics

for opportunistic insider trading days.

2 Does PIN mis-identify private information?

This section analyzes whether PIN mis-identifies private information because the underlying

model mechanically identifies the arrival of private information from turnover. Section 2.1

briefly describes the PIN model and CPIEPIN . Section 2.2 shows that the PIN model

identifies the arrival of private information from increases in turnover. Section 2.3 gives an

example of how the conflation of private information arrival and turnover in the PIN model

is consequential to the literature.

2.1 Description of the PIN model

The Easley, Kiefer, O’Hara, and Paperman (1996) PIN model posits the existence of a liq-

uidity provider who receives buy and sell orders from both informed traders and uninformed

traders. At the beginning of each day, the informed traders receive a private signal with

probability ↵. If the private signal is positive (which occurs with probability �), buy orders

from informed and uninformed traders arrive following a Poisson distribution with intensity

µ + ✏B, while sell orders come only from the uninformed traders and arrive with intensity

✏S. If the private signal is negative (with probability 1 � �), sell orders from informed and

uninformed traders arrive following a Poisson distribution with intensity µ + ✏S, while buy

orders come only from the uninformed traders and arrive with intensity ✏B. If the informed

traders receive no private signal, they do not trade; thus, all buy and sell orders come from

the uninformed traders and arrive with intensity ✏B and ✏S, respectively. Fig. 1 shows a tree

diagram of this model. The di↵erence in arrival rates captures the intuition that on days

with positive private information, the arrival rate of buy orders increases over and above the

normal rate of noise trading because informed traders enter the market to place buy orders.
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Similarly, the arrival rate of sell orders rises when the informed traders seek to sell based on

their negative private signals. Therefore, in theory, the PIN model identifies the arrival of

private information through increases in the absolute value of the order imbalance.

To formalize the concept of CPIEPIN , let Bi,t (Si,t) represent the number of buys (sells)

for stock i on day t and ⇥PIN,i = (↵i, µi, ✏Bi , ✏Si , �i) represent the vector of the PIN model pa-

rameters for stock i. Let DPIN,i,t = [⇥PIN,i, Bi,t, Si,t]. The likelihood function of the Easley,

Kiefer, O’Hara, and Paperman (1996) model is
QT

t=1 L(DPIN,i,t), where L(DPIN,i,t) is equal to

the likelihood of observing Bi,t and Si,t on a day without private information (LNI(DPIN,i,t))

added to the likelihood of Bi,t and Si,t on a day with positive information (LI+(DPIN,i,t)) and

to the likelihood of Bi,t and Si,t on a day with negative information (LI�(DPIN,i,t)). Each

of the likelihood functions (LNI(DPIN,i,t), LI+(DPIN,i,t) and LI�(DPIN,i,t)) corresponds to a

node of the tree in Fig. 1. See Internet Appendix D for details.

Using the PIN model, for each stock-day, we compute the probability of an information

event conditional both on the model parameters and on the observed total number of buys

and sells. Let the indicator Ii,t take the value of one if an information event occurs for

stock i on day t, and zero otherwise. For the PIN model, we compute CPIEPIN,i,t =

P [Ii,t = 1|DPIN,i,t]. This probability is given by (LI�(DPIN,i,t)+LI+(DPIN,i,t))/L(DPIN,i,t).

CPIEPIN,i,t represents the econometrician’s posterior probability of an information event

given the data observed on that day, and the underlying model parameters.

Note that if we condition down with respect to the data, CPIEPIN,i,t reduces to the

model’s unconditional probability of information events (↵i). The unconditional probability

represents the econometrician’s beliefs about the likelihood of an information event before

seeing any actual orders or trades. In the absence of buy and sell data, an econometrician

would assign a probability ↵i = E[CPIEPIN,i,t] to an information event for stock i on day

t, where the expectation is taken with respect to the joint distribution of Bi,t and Si,t.

We estimate the PIN model numerically via maximum likelihood for every firm-year

in our sample. The estimation procedure is similar to that used in Duarte and Young

(2009). The parameter estimates are used for computing CPIEPIN in Section 2.2. Table

2 contains summary statistics for the parameter estimates of the PIN model. Table 2 also

contains summary statistics of the cross-sectional sample means and standard deviations of
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CPIEPIN . The results in Table 2 show that the mean CPIEPIN behaves exactly like ↵.

Hence, changes in CPIEPIN and changes in the estimated ↵ are analogous. Fig. 2 Panel A

shows how the distribution of ↵ changes over time. Interestingly, the PIN model ↵ increases

over time, with the median PIN ↵ rising from about 30% in 1993 to 50% in 2012.12 Panel B

of Fig. 2 plots the time series of PIN . Note that PIN decreases over time in spite of the fact

that ↵ increases. This happens because, according to the PIN model, the intensity of noise

trading is increasing over time while the intensity of informed trading remains relatively flat

as shown in Panel C of Fig. 2. It is important to note, however, that the time series patterns

of the model parameters in Fig. 2 have no implications for how the PIN model identifies

private information.

We also estimate the parameter vectors ⇥PIN,i in the period t 2 [�312,�60] before an

earnings announcement. These parameter estimates are used to compute the CPIEs in

Section 2.3. The summary statistics of the parameter estimates for the event studies are

qualitatively similar to those in Table 2 and in Figure 2.

2.2 How does the PIN model identify private information?

To show that the PIN model conflates turnover with the arrival of private information,

we start with a scatter plot of real and simulated order flow data for Exxon-Mobil in Fig.

3. Panels A and B plot simulated and real order flow for Exxon-Mobil in 1993 and 2012

respectively, with buys on the horizontal axis and sells on the vertical axis. Real data are

marked as +, and simulated data as transparent dots. The real data are shaded according

to the CPIE, with darker points (+ magenta) representing low and lighter points (+ cyan)

high CPIEs. Panels C and D plot the CPIEPIN as function of turnover. The vertical lines

in these panels represent the annual mean of daily turnover.

Panel A of Fig. 3 illustrates the central intuition behind the PIN model. The simulated

data comprise three types of days, which create three distinct clusters. Two of the clusters

are made up of days characterized by relatively large absolute order flow imbalance, with

12The increase in our estimated PIN model ↵ parameters is somewhat larger than that in Brennan, Huh,
and Subrahmanyam (2015). This small di↵erence arises because Brennan, Huh, and Subrahmanyam (2015)
have a larger number of stocks per year due to the fact that we apply sample filters similar to those in
Odders-White and Ready (2008). In fact, without these filters, the increase in our estimated PIN model ↵
parameters from 1993 to 2012 is comparable to that in Brennan, Huh, and Subrahmanyam (2015).
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a large number of sells (buys) and relatively few buys (sells). The third group of days has

relatively low numbers of buys and sells because there is no private information arrival.

Generalizing from this figure, days with large absolute order flow imbalances correspond to

informed traders entering the market in the PIN model.

The real data, on the other hand, show no distinct clusters in Panel A, and in Panel

B of Fig. 3 the PIN model’s three clusters barely overlap with even a small portion of

the data. This implies that the model cannot account for existence of the majority of the

daily observations of order flow for Exxon-Mobil in 2012. In essence, the model classifies

almost all daily observations as extreme outliers. The intuition for this is that the PIN

model assumes that order flow is distributed as a mixture of three bivariate Poisson random

variables (i.e. the three clusters in Panels A and B). The mean and the variance of a Poisson

random variable are equal and, as a consequence, the Poisson mixtures behind the PIN model

cannot accommodate the high level and volatility of turnover that we observe, especially in

the later part of the sample.

Panels A and B also plot a line that separates the scatter plots in two regions. All the

observations below (above) these lines have turnover below (above) the annual mean of daily

turnover. These lines along with the CPIE color scheme for the observed data suggest that

the PIN model is mechanically identifying private information from turnover. To clarify this

mechanical identification, Panels C and D plot CPIEPIN as function of turnover. Panels

C and D show that the PIN model essentially classifies days with above average turnover

as private information days (i.e. CPIEPIN equal to one) and days with below average

turnover as days without private information (i.e. CPIEPIN equal to zero). Panels C and D

emphasize the mechanical nature of the relation between CPIEPIN and turnover. Note that

this identification does not necessarily relate to the possibility, suggested by Collin-Dufresne

and Fos (2014), that informed traders sometimes choose to trade on days with high liquidity

or turnover. Naturally, it is possible that informed traders do in fact trade on some days

with high turnover. However, the point here is that the PIN model identifies essentially all

days with above average turnover as information events.

Fig. 3 also delivers the intuition of why the PIN model mechanically conflates turnover

with private information arrival. Essentially this conflation happens because of two limita-

11



tions of the PIN model. First, under the PIN model, increases in expected turnover can only

come about through the arrival of private information. Specifically, recall that Ii,t indicates

an information event. Note that under the model the number of buys plus sells (turnover)

is distributed as a Poisson random variable with intensity:

�(Ii,t) =

(
✏B + ✏S when Ii,t = 0

✏B + ✏S + µ when Ii,t = 1
(1)

Thus, under the PIN model, private information is necessarily the cause of any variation in

expected daily turnover. Second, the PIN model assumes that order flow is distributed as a

mixture of three bivariate Poisson random variables (i.e. the three clusters in Panels A and B

of Fig. 3). This assumption is too restrictive to accommodate the high level and volatility of

turnover that we observe, especially in the later part of the sample. Hence the poor fit to the

turnover data along with the connection between turnover and arrival of private information

in the PIN model causes the model to mechanically identify shocks to turnover as due to the

arrival of private information.

Fig. 3 shows the PIN model’s naive identification of private information events for one

stock, however this is not an isolated example.13 In fact, the problem is widespread. To

quantify how often the PIN model classifies information events as simple function of turnover

we define

CPIENaive,i,t =

(
0, if turni,t < turni

1, if turni,t � turni

(2)

That is, CPIENaive,i,t is a dummy variable equal to one when turnover for stock i on day t

(turni,t) is larger than or equal to the annual average of daily turnover of stock i (turni) and

zero otherwise. To our knowledge there is no paper in the literature that proposes identifying

private information in similar manner.14 It is clear, however, from Panel D of Fig. 3 that

the PIN model essentially identifies the arrival of private information for Exxon-Mobil in

2012 according to this rule. We use CPIENaive to gauge the extent to which the PIN model

conflates the arrival of private information with turnover. Specifically, Panel A of Fig. 4

shows the distribution of the fraction of days for which CPIEPIN is identical to CPIENaive

13Here we use the word naive in a technical, statistical sense not in a pejorative sense.
14Stickel and Verrecchia (1994) propose identifying information arrival in general with a similar measure,

but not private information in particular.
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(|CPIEPIN �CPIENaive| < 10�10). CPIEPIN and CPIENaive are identical for about 85%

of the annual observations for the median stock since 2002.

Another way to gauge the extent to which the PIN model breaks down later in our sample

period is to count the number of days that the PIN model classifies as outliers. Panel B of

Fig. 4 shows the fraction of days for the median stock-year which the PIN model classifies

as “outliers” (likelihoods smaller than 10�10). According to the PIN model, for the median

stock about 60% (90%) of the annual observations are classified as outliers in 2005 (2010).15

Figs. 3 and 4 also give the intuition for why the median PIN ↵ increases over time in Fig.

2. To see this, recall that ↵ is the unconditional expected value of CPIEPIN . Therefore,

as we observe more CPIEPIN values approaching one, the estimated PIN ↵ must increase.

In fact, the median PIN ↵ becomes close to 50% later in the sample which consistent with

the fact that the PIN model assigns a CPIEPIN equal to one (zero) to days with turnover

above (below) the average.

Given the strong connection between CPIEs and the unconditional probability of in-

formation arrival (↵), Figs. 3 and 4 call into question the use of PIN as proxy for private

information. The PIN of a stock, defined as ↵µ
↵µ+✏B+✏S

, is the unconditional probability that

any given trade is initiated by an informed trader. Therefore CPIEPIN and PIN are linked

via the unconditional probability of an information event, ↵. While the parameters µ, ✏B

and ✏S also a↵ect PIN , these parameters are jointly identified with ↵. Hence it seems ex-

tremely unlikely that in the joint identification of the model parameters, biases in the other

parameters ‘correct’ the biases in ↵ in such a way that PIN is ‘rescued’ as a reasonable

proxy for private information. Thus, while our CPIE results do not speak directly to µ, ✏B

and ✏S, they still call into question PIN as a measure of private information.

To formally show that the PIN model identifies private information from turnover instead

of order flow, we use daily data to estimate the following regression for every stock-year i in

our sample: CPIEPIN,i,t = ↵i + �0,i|B � S|i,t + �1,i|B � S|

2
i,t + �2,iturni,t + �3,iturn

2
i,t + "i,t.

We then compare the results from regressions with data created by simulating the PIN

15O’Hara, Yao, and Ye (2014) find that high-frequency trading is associated with an increase in the use of
odd lot trades, which do not appear in the TAQ database. Therefore, estimates of the PIN model parameters
computed using recent TAQ data may be systematically biased. More broadly, Fig. 4 indicates that even if
the PIN model are estimated using data that includes odd lot trades, the model will still be badly misspecified
late in the sample.
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model to results from regressions with real data. To create the simulated data, we first

estimate the parameters of the PIN model for each firm-year in our sample. Then, for

each firm-year, we generate 1,000 artificial firm-years’ worth of data (i.e. Bi,t and Si,t)

using the estimated parameters. We then compute the CPIEPIN,i,t for each trading day

in a simulated trading year and regress these CPIEs on absolute order flow imbalance and

turnover. The results of the regressions using simulated data are useful because they reveal

how the PIN model is intended to identify private information arrival and also allow us

to build empirical distributions of the R

2
s of the regressions of CPIEs on absolute order

imbalance and turnover under the null hypothesis that the PIN model correctly describes

the order flow data.16

Panel A of Table 3 presents the results of yearly multivariate regressions of CPIEPIN

on absolute order flow imbalance |B � S| and |B � S|

2. We add squared terms to these

regressions to account for nonlinearities in the relationship between CPIEPIN and |B � S|.

We average the simulated results for each PERMNO-Year and report in Panel A of Table

3 the median coe�cient estimates and t-statistics. The coe�cients are standardized so

they represent the increase in CPIEPIN due to a one standard deviation increase in the

corresponding independent variable. We also report the average of the median, the 5th, and

the 95th percentiles of the empirical distribution of R2s of these regressions generated by the

1,000 simulations. In general, the coe�cients are highly statistically significant and the R2s

are high. This is consistent with intuition that if the model were literally true, the absolute

order imbalance could be used to infer the arrival of private information.

The columns of Table 3 labeled as ‘R2
inc.’ include statistics on the increase in the R2 that

is due to the inclusion of turnover (turn) and turnover squared (turn2) in the regressions.

Specifically, R2
inc. is equal to the di↵erence between the R2 of the extended regression model

with turnover terms and the R

2 of a regression that includes only order imbalance terms.

We report the average of the median, the 5th, and the 95th percentiles of the R

2
inc.s of these

regressions across the 1,000 simulations. The incremental increase in R

2s are relatively low,

16Since there are many moments that the PIN model can fail to match, there are many tests that might
reject the PIN model (e.g. Duarte and Young (2009)). Our regression tests are not designed to analyze
whether the PIN model matches particular moments in the data but instead are focused on how the PIN
model identifies the fundamental variable of interest because CPIEPIN is a direct measure of private infor-
mation according to the PIN model.
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with an average value of around 10%, which implies that, under the model’s data generating

process, turnover has only modest incremental power in explaining CPIEPIN . The picture

that emerges from these regressions is that if the PIN model were a perfectly accurate

representation of trading activity, CPIEPIN would be determined solely by the absolute

order flow imbalance on each day.

Panel B of Table 3 reports regression results for the real rather than simulated data.

With the real data, the picture is very di↵erent. The R2s of the regressions of CPIEPIN on

|B � S| and |B � S|

2 are much smaller than those in the simulations. On the other hand,

the incremental R2s from turnover are much higher than those in Panel A. The incremental

R

2 also increases over time with a value of about 36% in 1993, to nearly 46% in 2012.

This implies that turnover and turnover squared explain a much larger degree of variation

in CPIEPIN than absolute order imbalance. In fact, the average ratio of the median R

2s,

R

2
inc./(R

2 + R

2
inc.), is about 65%. The di↵erence arises because, in the real data, absolute

order flow imbalance and turnover are only weakly correlated. For instance, large absolute

order flow imbalances are possible when turnover is below average, and vice versa. Under

the PIN model, however, the two are highly correlated.

We test the hypothesis that R2
inc.s in the actual data are consistent with those generated

under the PIN model. Panel B reports the average p-value (the probability of observing an

R

2
inc. in the simulations at least as large as what we observe in the data) across all stocks, and

the frequency that we reject the null at the 5% level implied by the distribution of simulated

R

2
inc.s. The PIN model is rejected in about 89% of the stock-years in our sample, and there

is on average less than a 7% chance of the PIN model generating R

2
inc.s as high as what we

see in the data.

The results in Table 3 indicate that the PIN model identifies private information from

increases in turnover, as opposed to changes in absolute order imbalances for the majority

of the sample. These findings are inconsistent with the microstructure assumptions of the

PIN model—controlling for absolute order imbalance there should be no room for turnover

in explaining private information arrival.
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2.3 Is the conflation of private information arrival and turnover
consequential?

The previous section shows that the PIN model primarily identifies private information

from turnover. The question remains, however, whether this is merely an inconsequential

specification issue or whether this changes the interpretation of results in the broader finance

and accounting literature. We address this question with an example that uses the PIN

model in an event study context. Specifically, we examine how well the PIN model identifies

information events around earnings announcements.

Unlike a standard event study, we focus on movements in CPIE rather than price move-

ments. We examine the period t 2 [�20, 20] around the event. To do so, we estimate the

parameter vector ⇥PIN,i in the period t 2 [�312,�60] before the event and then compute

the daily CPIEs for the period t 2 [�20, 20] surrounding the announcement. Prior stud-

ies estimate the parameters of the model in various windows around an event in order to

compute the PIN . Our procedure is di↵erent in that we estimate the parameters of the

model one year prior to the event and then employ the estimated parameters as if we were

an econometrician observing the market data (i.e. buys and sells) and attempting to infer

whether an information event occurred. Table 1 Panel B presents summary statistics for

order imbalance, intraday returns, overnight returns, number of buys, and the number of

sells for earnings announcement days (t = 0).

Panel A of Fig. 5 shows the average CPIEPIN in event time for our sample of earnings

announcements. The graph shows that, under the PIN model, the probability of an informa-

tion event increases prior to the event, starting below 55% 20 days before the announcement

and peaking above 80% on the day after the announcement and remains high for 20 trading

days after the actual earnings become public information. Panels B and C of Fig. 5 shed

light on the features of the data that produce the observed pattern in the average CPIEPIN

in Panel A. Panel B shows the average predictions from OLS regressions of CPIEPIN on

absolute order imbalance and absolute order imbalance squared across all of the stocks in

the event study sample. The solid line indicates that absolute order imbalance explains

only a small fraction of the variation in CPIEPIN within the event window. Panel C shows

the average predictions from regressions of CPIEPIN on turnover and turnover squared.
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The solid line indicates that the variation in CPIEPIN around earnings announcements is

explained almost entirely by turnover. The intuition follows directly from the results in

Section 2.2, which shows that CPIEPIN is mechanically driven by turnover increases. The

higher post-event turnover levels are enough to keep CPIEPIN above its pre-event mean for

a substantial period.

To formalize the intuition behind Panels B and C of Fig. 5, we run regressions similar

to those in Table 3 using our event sample. Specifically, we run regressions of CPIEPIN on

absolute value of order imbalance and its squared term during the event window [-20,+20].

The results of these regressions (see Table 4 ) indicate that absolute order imbalance explains

little of the variation in CPIEPIN in the event window while turnover explains most of the

variation in CPIEPIN . In fact, Table 4 shows that for the median stock, adding turnover

and turnover squared to these regressions nearly quadruples the R

2s.

To see how the conflation of turnover with private information arrival is consequential

to researchers using PIN , consider the results in Panel A of Fig. 5. It may appear to a re-

searcher unaware that the PIN model conflates turnover with private information arrival that

the results in Panel A of Fig. 5 suggest that the PIN model identifies private information in a

sensible way. After all, CPIEPIN increases dramatically from 55% before the announcement

to over 75% on the day of the announcement then falls after the announcement, albeit over

a period of weeks. However, the decomposition of the CPIEs in Panels B and C of Fig. 5

points that the dramatic increase in CPIE around the event is actually result of variation

in turnover. Therefore, the results in Panels B and C of Fig. 5 lead to a di↵erent interpreta-

tion of the findings in Panel A because turnover around earnings announcement can vary for

many reasons unrelated to the arrival of private information. Traditionally the literature has

attributed high turnover around announcements to disagreement (e.g. Kandel and Pearson

(1995)). Karpo↵ (1986) suggests that high turnover after earnings announcements may also

be due to divergent prior expectations, while Frazzini and Lamont (2007) attributes high

turnover to small investors’ lack of attention. None of these studies suggest that the higher

turnover around announcements is necessarily the result of increased informed trade, per

se. Indeed, even the PIN model suggests that once we control for absolute order imbalance,

turnover should have little power to identify informed trade.
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3 Two alternatives to the PIN model

This section analyzes two models that do not conflate the arrival of private information with

turnover. The first model, is an generalization of the PIN model (the GPIN model) based

on order flow alone. The other model is the OWR model, which infers the arrival of private

information from returns and order flow imbalance. Section 3.1 presents the GPIN model.

Section 3.2 describes the OWR model and Section 3.3 presents two analyses of how these

models identify private information.

3.1 Generalizing the PIN model

As we discuss in Section 2.2 and specifically in Equation 1, the conflation of turnover with

the arrival of private information in the PIN model happens because of two limitations of

the PIN model. First, under the PIN model, expected daily turnover (�) is a deterministic

and increasing function of private information arrival (Equation 1). Second, the PIN model

assumption about the distribution of order flow is is too restrictive to accommodate the high

level and volatility of turnover that we observe, especially in the later part of the sample.

In this section, we present a generalization of the PIN model that addresses these two

limitations of the PIN model. In a nutshell, the GPIN model allows expected daily turnover

(�) to be drawn independently of the arrival of private information while keeping the same

information structure of the PIN model. Essentially, the GPIN model relaxes the restrictive

feature of the PIN model that the liquidity provider can infer the arrival of private infor-

mation from turnover, while keeping the assumption that the liquidity provider infers the

arrival of private information from the relative number of buy versus sell orders. This is a

natural generalization since there is no theoretical reason why turnover should be determin-

istically associated with the arrival of private information. Expected turnover may vary for

many reasons unrelated to the arrival of private information. For instance, turnover is ex-

pected to vary for calendar reasons (e.g. trading days close to holidays have lower turnover).

Moreover, there is no theoretical justification for why turnover should be positively asso-

ciated with the arrival of private information. On one hand, trading by informed traders

may increase turnover. For instance,Collin-Dufresne and Fos (2015, 2014) show that in some
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contexts, informed traders may disguise their trades in periods of high liquidity such that

market movements conceal the nature of their information. On the other hand, liquidity

traders may postpone trading when the arrival of private information is likely leading to a

negative relation between turnover and private information (e.g. Chae (2005)).

To generalize the PIN model, we first reparameterize it to focus on the intuition of its

failure. Panel A of Fig. 6 displays a reparameterization of the PIN model in terms of three

new parameters. First, the ratio of the intensity of uninformed buyer initiated trades to the

intensity of the total number of uninformed trades (✓ = ✏B/(✏B + ✏S)). Second, the ratio

of the expected number of informed to uninformed trades on days where there is private

information (⌘ = µ/(✏B + ✏S)). Third, the overall intensity of the number of buys plus

sells on days without private information arrival (�(0) = ✏B + ✏S). Panel A of Fig. 6 is a

re-parameterization of the PIN model in Fig. 1 using the parameters �(0), ⌘, and ✓ instead

of ✏B, ✏S, and µ.

The GPIN model generalizes the PIN model because it draws the expected turnover (�t)

independently of the arrival of private information instead of assuming, as the PIN model

does, that (�t) is a deterministic function of turnover. Panel B of Fig. 6 presents the tree

structure for the Generalized PIN model (GPIN). Specifically, the GPIN model in Panel B

of Fig. 6 draws �t from a Gamma(r, p/(1 � p)) distribution with shape parameter r and

scale parameter p/(1� p). Naturally, we could generalize the PIN model by drawing �t from

another distribution, however the fact that �t is drawn from a Gamma distribution makes

the model particularly tractable because, in this case, turnover (B + S) is distributed as

Negative Binomial (see Appendix E for proof), which dramatically simplifies the numerical

estimation of the model.17 In the maximum likelihood estimation the order flow intensity

(�) parameters r and p can be estimated in a first stage from the distribution of (B + S),

independently of the remaining information structure parameters which can be estimated in

a second stage. CPIEGPIN is calculated in the same way as in the PIN model. Moreover, if

we condition down with respect to the data, CPIEGPIN reduces to the model’s unconditional

probability of information events (↵). See Appendix E for a detailed discussion of the model,

17The mixture of the Poisson andGamma distributions is the well-knownNegative Binomial distribution
(see Casella and Berger (2002)).
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the associated GPIN measure, the likelihood function, and the CPIEGPIN calculation.

To illustrate how the GPIN model works, we present a stylized example of the GPIN in

Fig. 7. Analogous to the PIN model plot in Fig. 3, we plot simulated and real order flow data

for Exxon-Mobil in 1993 and 2012, with buys on the horizontal axis and sells on the vertical

axis. Panels A and B of Fig. 7 illustrate the central intuition behind the GPIN model. The

simulated data comprise three types of days, which create three distinct clusters. Two of

the clusters are made up of days characterized by a high proportion of imbalanced trades

(large |B�S|
B+S

), with a large number of sells (buys) and relatively few buys (sells). The third

group of days has a low proportion of imbalanced trades, no private information arrival, and

is clustered around the dashed line in the center of the scatter plots.

The GPIN model implies that days with information events are the ones in which the

proportion of imbalanced trades is large. An econometrician using the GPIN model, moving

along the dashed line in Panels A and B, would observe that days with above average

turnover–days the PIN model classifies as information events–are no longer classified as

such, because higher turnover is driven by a large draw of the parameter �t under the GPIN

model. Instead, the GPIN model identifies private information when moving away from the

dashed line–when the proportion of imbalanced trades is high.

Panels C and D plot CPIEGPIN as function of turnover. As opposed to the analogous

plot of the PIN model in Fig. 3, Panels C and D do not indicate any relation between

turnover and CPIEGPIN .18 Although the GPIN model is not a perfect description of the

order flow data, it manages to fix the problem of the PIN model which mechanically identifies

private information arrival from turnover.

Table 5 contains summary statistics for the parameter estimates of the GPIN model.

Table 5 also contains summary statistics of the cross-sectional sample means and standard

deviations of CPIEGPIN . We see that the mean CPIEGPIN behaves exactly like ↵. We

also estimate the GPIN model for every stock in our sample in the period t 2 [�312,�60]

before opportunistic insider trades. These parameter estimates are used to compute the

18Internet Appendix E shows the results of regressions of CPIEGPIN on the proportion of imbalanced
trades and turnover. These regressions are analogous to those that we performed with the PIN model in
Table 3. The results of these regressions indicate that the GPIN model does not conflate turnover with the
arrival of private information.
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CPIEGPIN in Section 3.3. The summary statistics of the parameter estimates for the event

studies are qualitatively similar to those in Table 5.

3.2 The OWR model

Odders-White and Ready (2008) extend Kyle (1985) by allowing for days with information

events and days without information events. Private information arrives before the opening

of the trading day with probability ↵. On days when private information arrives, the model

assumes that the information is publically revealed after the close of trade. The OWR model

identifies the arrival of private information through order flow imbalance, ye, the intraday

price response to order imbalance, rd, and through subsequent overnight price changes, ro.19

The vector (ye, rd, ro) is assumed to be multivariate normal with mean zero and a covariance

matrix that di↵ers between information days and non-information days.20

Fig. 8 shows the time line of the model. The intuition behind the OWR model is

that the market maker updates prices in response to order flow because the order flow could

reflect an information event. However, the subsequent price pattern is di↵erent depending on

whether there actually was an information event or not. If an information event occurs, the

overnight price response reflects a continuation of the market makers’ intraday reaction. If

no information event occurs, the overnight price response reverses the market makers’ initial

price reaction. Therefore, an econometrician can make inferences about the probability of an

information event in the OWR model because the covariance matrix of the three variables

(ye, rd, ro) di↵ers between days when private information arrives and days when only public

information is available.21

To see how the covariance matrix of (ye, rd, ro) di↵ers between information and non-

information days, consider first the covariance of the intraday and overnight returns. This

covariance is positive for information events, reflecting the fact that the information event is

not completely captured in prices during the day and the revelation of the private information

19We suppress the t subscript for ease of exposition.
20We follow Odders-White and Ready and remove systematic e↵ects from returns to obtain measures of

unexpected overnight and intraday returns (ro and rd). See Section 1 and Internet Appendix C for a detailed
description of how we compute ye, ro and rd.

21Unlike the market maker who must update prices before observing the overnight revelation of informa-
tion, the econometrician in the OWR model can make inferences about the arrival of private information
after viewing the overnight price response.
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means that the overnight return continues the partial intraday price reaction. In contrast,

this covariance is negative in the absence of an information event since the market marker’s

reaction to the noise trade during the day is reversed when she learns that there was no

private signal.

The other moments in the covariance matrix of (ye, rd, ro) are also a↵ected by the arrival

of private information. If no information event occurs, then V ar(ye) is composed of only

the variances of the uninformed order flow and the noise in the data. However, if an event

occurs, V ar(ye) increases because the order flow reflects at least some informed trading.

Similarly, V ar(rd) is higher for an information event, because it reflects the market maker’s

partial reaction to the day’s increased order flow. Since the private signal is revealed after

trading closes, V ar(ro) also increases in the wake of an information event, as it reflects

the remainder of the market maker’s partial reaction to the informed trade component in

order flow. Likewise, information events make cov(ye, rd) and cov(ye, ro) rise. The higher

covariance between order flow and intraday returns occurs because, in an information event,

both order flow and the intraday return (partially) reflect the impact of informed trading.

Along these same lines, because the market maker cannot separate the informed from the

uninformed order flow, she is unable to fully adjust the price during the day to reflect the

informed trader’s private signal. However, since the private signal is publically revealed and

fully reflected in prices after the close, cov(ye, ro) is higher during an information event.

In contrast to the PIN and GPIN models, the OWR model does not contain a direct

analog to the probability of informed trading (PIN). To understand this result, note that

the probability of informed trade in the PIN and GPIN models is given by the ratio of the

expected number of informed trades to the expected total number of trades on a given day.

Since the OWR model employs only the di↵erence between buys and sells, it does not make

assumptions about the distribution of number of trades. Thus, the OWR is mute regarding

the ratio of the expected number of informed trades to expected number of trades. This

may appear to be a limitation of the OWR model, but this is actually an advantage because

it allows the OWR model to disentangle variations in turnover from the arrival of informed

trading, much like the GPIN model.

Even though the OWR model does not have a measure analogous to the PIN measure,
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the OWR model admits other useful measures of private information. For instance, the

OWR model has a CPIEOWR which reduces to the model’s unconditional probability of

information events (↵) if we condition down with respect to the data. Moreover, Odders-

White and Ready (2008) motivate their model as a tool to separate the expected liquidity

provider losses due to trading with informed traders into the frequency of private information

arrival and the expected magnitude of the private information. Hence, the OWR allows for

the construction of private information measures that are based on both dimensions. The

PIN and GPIN models, on the other hand, focus only on the frequency of information arrival

and are silent with respect to the expected magnitude of the private information. Hence,

our comparison of the GPIN and OWR models with CPIEGPIN and CPIEOWR focuses

on the dimension of private information that both models have in common, namely the

frequency of information arrival. The fact that we are using CPIEs to compare the models

does not imply that we are taking the position that frequency measures are the only private

information metrics that are worthy of consideration.

As with the PIN and GPIN models, we estimate the OWR model numerically via max-

imum likelihood. Table 6 contains summary statistics for the parameter estimates of the

OWR model. Table 6 also contains summary statistics of the cross-sectional sample means

and standard deviations of CPIEOWR. As in the PIN and GPIN models, we see that the

mean CPIEOWR behaves exactly like ↵ in the OWR model. The estimated OWR ↵ param-

eters are in general higher than those in Odders-White and Ready (2008). This is due to the

fact that our definition of ye is di↵erent from that in Odders-White and Ready (2008) (see

the discussion in Section 1 above).22 Fig. 9 plots the time series of the estimated OWR ↵. In

contrast to the PIN ↵, the OWR ↵ is decreasing over time. This pattern may indicate that

private information arrival is less likely later in our sample. While interesting, understand-

ing this pattern is outside the scope of this paper and we leave this investigation for future

research. We also estimate the OWR model for each stock i in the period t 2 [�312,�60]

before opportunistic insider trades. These parameter estimates are used to compute the

CPIEs in Section 3.3.1. The summary statistics of the parameter estimates for the event

22In fact, we get ↵ estimates close to those reported in Odders-White and Ready (2008) if we define ye in
the same way that they do.
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studies are qualitatively similar to those in Table 6. Internet Appendix F has a detailed

description of model, its likelihood function, and the CPIEOWR calculation. Appendix F

also displays the results of regressions of CPIEOWR similar to those that we perform with

CPIEPIN in Section 2.2. These regressions indicate that the OWR model identifies the

arrival of private information in a way consistent with its theory.

3.3 Assessing the GPIN and OWR models

In this section, we use two di↵erent approaches to diagnose potential problems with OWR

and GPIN models’ ability to detect private information.

3.3.1 CPIEGPIN and CPIEOWR around insider trading

In this section we investigate whether the OWR and GPIN models are capable of identifying

opportunistic insider trades using the insider trade classification scheme developed in Cohen,

Malloy, and Pomorski (2012).23 There is a large literature that suggests that insiders may

have private information and may trade on that information.24 Recently, Cohen, Malloy, and

Pomorski (2012) show that a long-short portfolio that exploits the trades of opportunistic

traders (opportunistic buys minus opportunistic sells) earns value-weighted abnormal returns

of 82 basis points per month (9.8 percent annualized, t-statistic=2.15). They also show that

the trades of opportunistic insiders show significant predictive power for future news about

the firm, and that the fraction of traders who are opportunistic in a given month is negatively

related to the number of recent news releases by the SEC regarding illegal insider trading

cases. Opportunistic insider trades therefore, provide a convenient laboratory to examine

the models’ ability to detect the arrival of actionable private information.

Panel A (B) of Fig. 13 presents the average CPIEGPIN (CPIEOWR) in event time for

our sample of opportunistic insider trades. Both models show a statistically significant spike

in CPIEs at t = 0, consistent with the arrival of private information on the day that insiders

trade. Specifically, at t = 0, the CPIEs are more than two standard deviations higher than

the mean estimated between t 2 [�40, 21].

23See Section 1 for a further discussion of the classification of insider trades as opportunistic.
24See for instance Ja↵e (1974), Seyhun (1986, 1998), Roze↵ and Zaman (1988), Lin and Howe (1990),

Bettis, Vickery, and Vickery (1997), Lakonishok and Lee (2001), Kahle (2000), Ke, Huddart, and Petroni
(2003), Piotroski and Roulstone (2005), Jagolinzer (2009).

24



While CPIEGPIN rises on the day that insider actually trades, counterintutitively it

also spikes on several days after the insider trade. This suggests that the GPIN model

may be yielding ’false positives’ in the sense that it appears to identify the arrival of private

information when we have no a priori economic reason to suspect any such information arrival

(e.g. day t+5 and day t+16 after the insider trade). On the other hand, the CPIEOWR

rises a few days before the insider trades and clearly drops after the trade. The fact that

CPIEOWR increases a few days before the insider trades suggests that whatever private

signal the insider is responding to is also received by others that attempt to act on it as well.

3.3.2 Are CPIEGPIN and CPIEOWR related to return continuation?

The market microstructure literature has long held that price changes related to informed

trades should not be subsequently reversed while non-information related price changes (e.g.

dealer inventory control, price pressure, price discreteness etc.) are transient (e.g. Has-

brouck (1988, 1991a,b)). In this section, we investigate whether CPIEGPIN and CPIEOWR

are associated with subsequent return reversals. In particular, we examine the relation be-

tween CPIEs and return autocorrelations. The intuition is that if a model’s CPIE on

day t actually reflects a high probability of informed trade then we expect that the return

on day t will be continued over the subsequent day. To capture this idea we model return

autocorrelations as linear functions of CPIE. Specifically, we consider the following regres-

sions: ri,t+1 = ↵+ �OWR,1ri,t + �OWR,2CPIEOWR,t + �OWR,3(ri,t ⇥CPIEOWR,t) + "i,t+1, and

ri,t+1 = ↵ + �GPIN,1ri,t + �GPIN,2CPIEGPIN,t + �GPIN,3(ri,t ⇥ CPIEGPIN,t) + "i,t+1.

In the above regressions, ri,t is the open-to-open, risk-adjusted return (ri,d,t + ri,o,t) on

day t. Thus, there is no overlap between the intraday and overnight returns that are used

to compute CPIEOWR,i,t on day t and the return on day t + 1. This is important because

if there were overlap between CPIEOWR,i,t and ri,t+1, then the relation would be mechan-

ical. The coe�cients �OWR,3 and �GPIN,3 reflect the impact of the model’s CPIE on the

correlation between the return on day t and the return the next trading day. We estimate

the regressions above using a panel regression approach including firm and year fixed e↵ects

with standard errors clustered by firm and year. Table 7 reports the coe�cient estimates

and t-statistics for these regressions. We standardize both CPIEOWR and CPIEGPIN in
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these regressions to have a standard deviation of one. The results in Table 7 show that

the estimates for both �OWR,3 and �GPIN,3 are positive and significant, indicating that both

CPIEGPIN and CPIEOWR are associated with smaller future return reversals. To see this

note that both regressions show a tendency of daily returns to reverse because the coe�cients

on lagged returns in both regressions are negative. In fact, a one standard deviation shock

to CPIEOWR is associated with a 27% (2.417/8.883) decline in the subsequent reversal,

while a one standard deviation shock to CPIEGPIN is associated with a 4% (0.271/6.955)

drop in the subsequent reversal. Consistent with Hasbrouck (1991a,b), both the OWR and

GPIN models appear to capture the arrival of information that has a persistent impact on

prices. However, the impact of CPIEOWR on return reversals is much larger than that of

CPIEGPIN , which is consistent with the OWR model doing a better job capturing informed

trade than the GPIN model.

4 Conclusion

Recent work suggests that the PIN measure, developed in the seminal work of Easley

and O’Hara (1987), Easley, Kiefer, O’Hara, and Paperman (1996), and Easley, Kiefer, and

O’Hara (1997), may fail to capture private information (e.g. Aktas, de Bodt, Declerck,

and Van Oppens (2007), Benos and Jochec (2007), and Collin-Dufresne and Fos (2015)).

However, PIN remains the most widely used measure of information asymmetry in the

accounting, corporate finance and asset pricing literature today. This may be because there

is no definitive test of any model’s ability to capture private information arrival since arrival

of private information is by definition unobservable.

Our findings indicate that the PIN model mechanically groups all sources of variation in

turnover (e.g. disagreement, calendar e↵ects, portfolio rebalancing, taxation, etc.) under the

umbrella of private information arrival. This is at odds with a vast literature that suggests

turnover varies for many reasons unrelated to the arrival of private information. This failure

of the PIN model is particularly strong after the increase in turnover in the early 2000s. In

fact, after 2002 for the median stock in our sample, the PIN model is essentially equivalent

to a näıve model that assigns a probability of one to the arrival of private information on any

day where turnover is above average and zero probability to the arrival of private information
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on any other day. These findings indicate that the the PIN model does not deliver reliable

proxies for private information.

We highlight how consequential the PIN model’s conflation of turnover with volume is

to the literature with an event study around earnings announcements. Our results suggest

the findings in Brennan, Huh, and Subrahmanyam (2015) and in Benos and Jochec (2007)

can simply be attributed to the fact that turnover (instead of the probability of private

information arrival) is typically much higher after earnings announcements. This example is

emblematic of a pervasive issue in the literature since, in many, if not all, contexts the PIN

model ultimately yields misleading inferences about private information arrival.

We also examine two alternatives to the PIN model that do not conflate turnover with the

arrival of private information. One is the Odders-White and Ready (2008) model (OWR),

which infers the arrival of private information from returns and order flow, the other is an

extension of the PIN model (the GPIN model), which is solely based on order flow but cor-

rects the PIN model’s mechanical association of private information arrival with variation in

turnover. Our results do not suggest any problems with mis-identifying private information

for either the GPIN or the OWR models. This being said, we believe the OWR model per-

forms somewhat better than the GPIN model for two reasons. First, both CPIEOWR and

CPIEGPIN increase in periods of opportunistic insider trading. However, CPIEOWR encour-

agingly decreases dramatically immediately following the insider trades, while CPIEGPIN

displays suspicious spikes in the post event period with no apparent economic interpretation.

Second, the relation between CPIEOWR and future return continuation is about seven times

larger than that of the CPIEGPIN .

As we pointed out previously, there is no perfect identification strategy for private in-

formation arrival. Thus, our insider trading and return continuation tests of the OWR and

GPIN models are not definitive. However, these two tests are informative because they do

not reveal problems with the the OWR and GPIN models’ ability to sensibly identify private

information arrival. Furthermore, in their totality, our results suggest that the GPIN model

is a promising alternative to the PIN model for research that requires a model based on order

flow alone. On the other hand, if relying on order flow alone is not a requirement, then the

OWR model is the more promising alternative to the PIN model.
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Table 1: Summary Statistics. This table summarizes the full sample and event
day (t=0) returns, order imbalance, and number of buys and sells. We compute
intraday and overnight returns as well as daily buys and sells for stocks between 1993
and 2012 using data from the NYSE TAQ database. Following Odders-White and
Ready (2008), we compute the intraday return, rd, at time t as the volume-weighted
average price at t (VWAP) minus the opening quote midpoint at t plus dividends
at time t, all divided by the opening quote midpoint at time t. We compute the
overnight return, ro, at t as the opening quote midpoint at t + 1 minus the VWAP
at t, all divided by the opening quote midpoint at t. We compute ye as the daily
total volume of buys minus total volume of sells, divided by the total volume. For
the PIN and GPIN models, we use the daily total number of buys and sells. Our
sample of earnings announcements includes all CRSP/COMPUSTAT firms listed
in NYSE between 1995–2009 for which we have exact timestamps collected from
press releases in Factiva which fall within a [-1,0] window relative to COMPUSTAT
earnings announcement dates. Opportunistic insider trades are defined as in Cohen,
Malloy, and Pomorski (2011).

(a) Full Sample

N Mean Std Q1 Median Q3

ye 5,286,191 2.766% 31.259% -10.433% 3.282% 18.996%
rd 5,286,191 -0.004% 1.500% -0.707% -0.024% 0.680%
ro 5,286,191 0.003% 1.297% -0.566% -0.024% 0.525%
# Buys 5,286,191 1,876 6,917 37 220 1,128
# Sells 5,286,191 1,843 6,894 36 194 1,033

(b) Earnings Announcements

N Mean Std Q1 Median Q3

ye 21,979 5.099% 22.122% -4.787% 4.373% 16.400%
rd 21,979 0.002% 2.424% -1.252% -0.004% 1.271%
ro 21,979 0.075% 2.313% -1.042% 0.013% 1.153%
# Buys 21,979 4,572 13,491 223 956 3,421
# Sells 21,979 4,465 13,546 191 831 3,165

(c) Opportunistic Insider Trades

N Mean Std Q1 Median Q3

ye 32,676 4.980% 20.425% -5.106% 3.874% 15.353%
rd 32,676 0.151% 1.566% -0.632% 0.086% 0.865%
ro 32,676 0.056% 1.247% -0.467% 0.020% 0.528%
# Buys 32,676 3,852 10,645 354 1,129 3,478
# Sells 32,676 3,787 10,554 300 996 3,303



Table 2: PIN Parameter Estimates. This table summarizes parameter estimates of the PIN
model for 21,206 PERMNO-Year samples from 1993 to 2012. α represents the average unconditional
probability of an information event at the daily level. δ represents the probability of good news,
and 1− δ represents the probability of bad news. εB and εS represent the expected number of daily
buys and sells given no private information. µ represents the expected additional order flows given
an information event. CPIE and Std(CPIE) are the PERMNO-Year mean and standard deviation
of CPIEPIN .

N Mean Std Q1 Median Q3

α 21,206 0.372 0.122 0.291 0.375 0.445
δ 21,206 0.607 0.209 0.484 0.625 0.762
εB 21,206 1,625 5,388 33 193 1,039
εS 21,206 1,596 5,369 35 186 956
µ 21,206 312 593 43 160 314
CPIE 21,206 0.382 0.135 0.293 0.379 0.449
Std(CPIE) 21,206 0.451 0.052 0.427 0.470 0.490



Table 3: PIN Model Regressions. This table reports real and simulated regressions of the CPIEPIN on
absolute order imbalance (|B − S|), and order imbalance squared (|B − S|2). In Panel A, we simulate 1,000
instances of the PIN model for each PERMNO-Year in our sample (1993–2012) and report mean standardized
estimates for the median stock, along with 5%, 50%, and 95% values of the R2 (R2

inc.) values. We compute
the incremental R2

inc. as the R2 attributed to turn and turn2 in an extended regression model. In Panel B,
we report standardized estimates for the median stock using real data, along with the median R2 and R2

inc.

values, and tests of the null hypothesis that the observed relation between CPIEPIN and turn is consistent
with the PIN model. The p-value of is the mean probability under the null of observing an R2

inc. at least as
large as what is observed in the real data. The % Rej. is the fraction of stocks for which we reject the null
hypothesis at the 5% level.

(a) Simulated Data

β t R2 R2
inc.

|B − S| |B − S|2 |B − S| |B − S|2 5% 50% 95% 5% 50% 95%

1993 0.437 -0.079 (10.31) (-1.80) 71.13% 76.09% 80.38% 7.17% 10.57% 15.25%
1994 0.422 -0.072 (9.63) (-1.67) 67.49% 73.26% 78.11% 9.39% 13.47% 18.55%
1995 0.410 -0.058 (9.68) (-1.36) 70.32% 75.39% 79.85% 7.64% 11.39% 16.02%
1996 0.432 -0.085 (9.89) (-1.90) 69.02% 74.28% 78.87% 8.32% 12.17% 16.97%
1997 0.450 -0.089 (10.30) (-1.98) 71.99% 76.93% 81.12% 7.36% 10.76% 14.79%
1998 0.482 -0.104 (10.79) (-2.36) 74.32% 78.71% 82.46% 6.65% 9.53% 13.30%
1999 0.484 -0.112 (11.03) (-2.47) 75.62% 79.96% 83.46% 6.49% 9.36% 12.92%
2000 0.529 -0.137 (11.88) (-3.00) 79.78% 83.36% 86.15% 4.98% 7.47% 10.45%
2001 0.638 -0.217 (13.97) (-4.61) 83.34% 86.13% 88.57% 4.17% 6.00% 8.35%
2002 0.695 -0.260 (14.11) (-5.30) 82.61% 85.53% 88.06% 4.83% 6.92% 9.54%
2003 0.665 -0.244 (12.38) (-4.52) 78.88% 82.36% 85.36% 7.90% 10.56% 13.79%
2004 0.650 -0.223 (11.49) (-4.16) 77.84% 81.38% 84.59% 8.92% 11.67% 15.03%
2005 0.658 -0.220 (12.59) (-4.46) 80.47% 83.59% 86.45% 7.69% 10.09% 12.95%
2006 0.650 -0.221 (11.96) (-4.35) 80.31% 83.36% 86.18% 7.76% 10.29% 13.50%
2007 0.632 -0.222 (9.40) (-4.07) 79.72% 83.35% 86.15% 8.53% 10.93% 14.05%
2008 0.666 -0.235 (12.29) (-4.83) 82.44% 85.25% 88.00% 6.83% 9.15% 11.78%
2009 0.709 -0.269 (14.37) (-5.70) 84.29% 86.87% 89.20% 6.22% 8.28% 10.57%
2010 0.704 -0.261 (14.60) (-5.68) 84.99% 87.41% 89.64% 5.66% 7.55% 9.89%
2011 0.671 -0.234 (14.13) (-5.21) 85.91% 88.25% 90.21% 5.34% 7.28% 9.39%
2012 0.693 -0.251 (14.92) (-5.62) 85.68% 87.98% 90.34% 5.22% 7.22% 9.50%



Table 3: PIN Model Regressions. Continued.

(b) Real Data

β t R2 R2
inc.

|B − S| |B − S|2 |B − S| |B − S|2 50% 50% p-value % Rej.

1993 0.300 -0.073 (5.98) (-1.43) 35.76% 36.20% 2.57% 94.07%
1994 0.264 -0.047 (5.28) (-0.92) 32.82% 40.02% 3.36% 92.17%
1995 0.280 -0.061 (5.77) (-1.29) 34.20% 36.97% 5.05% 89.29%
1996 0.277 -0.065 (5.69) (-1.28) 30.92% 38.97% 3.85% 92.30%
1997 0.283 -0.073 (5.67) (-1.36) 30.80% 38.86% 3.54% 92.99%
1998 0.274 -0.059 (5.26) (-1.09) 30.12% 39.58% 3.54% 93.67%
1999 0.280 -0.059 (5.21) (-1.08) 29.05% 39.46% 3.29% 94.29%
2000 0.300 -0.079 (5.48) (-1.39) 29.99% 39.08% 2.59% 95.63%
2001 0.339 -0.111 (5.67) (-1.87) 29.44% 39.39% 3.53% 94.76%
2002 0.279 -0.058 (4.09) (-0.85) 23.05% 44.28% 5.59% 91.48%
2003 0.247 -0.032 (3.57) (-0.47) 21.97% 41.86% 9.55% 84.87%
2004 0.211 -0.005 (3.14) (-0.08) 19.55% 45.22% 8.78% 86.21%
2005 0.254 -0.053 (3.81) (-0.81) 19.42% 46.29% 9.21% 85.47%
2006 0.251 -0.066 (3.80) (-0.96) 16.95% 48.44% 10.83% 85.30%
2007 0.271 -0.104 (4.01) (-1.57) 14.30% 50.32% 14.04% 82.00%
2008 0.268 -0.111 (4.00) (-1.66) 13.78% 50.97% 11.49% 86.08%
2009 0.280 -0.117 (4.15) (-1.74) 14.59% 49.91% 10.08% 87.58%
2010 0.291 -0.124 (4.39) (-1.82) 15.96% 47.64% 10.62% 87.45%
2011 0.295 -0.131 (4.56) (-2.03) 15.94% 46.60% 11.14% 86.90%
2012 0.319 -0.145 (4.96) (-2.23) 17.56% 45.61% 13.31% 85.12%



Table 4: PIN Regressions Around Earnings Announcements. This table reports regression results
for CPIEPIN around Earnings Announcements. For each announcing firm in our sample we run regressions
of CPIEPIN on absolute order imbalance (|B − S|) and absolute order imbalance squared (|B − S|2) from
[−20,+20] and report median estimates across all the events. We compute the incremental R2

inc. as the increase
in R2 attributed to turn and turn2 in an extended regression model. We report standardized coefficients.

β t R2 R2
inc.

|B − S| |B − S|2 |B − S| |B − S|2 50% 50%

0.143 -0.032 (1.07) (-0.35) 15.42% 44.44%



Table 5: GPIN Parameter Estimates. This table summarizes parameter estimates of the GPIN
model for 21,206 PERMNO-Year samples from 1993 to 2012. α represents the average unconditional
probability of an information event at the daily level. δ represents the probability of good news,
and 1− δ represents the probability of bad news. The total number of trades in any given day (t) is
drawn from a Poisson distribution with intensity λt, where λt is draw from a Gamma distribution
with shape parameter r and scale parameter p/(1−p). The number of buys on a day with no private
information is draw from a Poisson distribution with intensity θ×λt. On days with negative news,
the number of buys is drawn from a Poisson with intensity θ/(1 + η)× λt. CPIE and Std(CPIE)
are the PERMNO-Year mean and standard deviation of CPIEGPIN .

N Mean Std Q1 Median Q3

α 21,206 0.493 0.088 0.448 0.498 0.543
δ 21,206 0.495 0.184 0.372 0.492 0.616
r 21,206 7.210 4.724 4.056 5.976 8.960
p 21,206 0.948 0.080 0.932 0.984 0.997
θ 21,206 0.515 0.049 0.493 0.514 0.546
η 21,206 0.316 0.242 0.152 0.240 0.413
CPIE 21,206 0.494 0.087 0.449 0.499 0.543
Std(CPIE) 21,206 0.414 0.082 0.367 0.445 0.478



Table 6: OWR Parameter Estimates. This table summarizes parameter estimates of the OWR
model for 21,206 PERMNO-Year samples from 1993 to 2012. α represents the average unconditional
probability of an information event at the daily level. σu represents the standard deviation of the
order imbalance due to uninformed traders, which is observed with normally distributed noise with
variance σ2

z . σi represents the standard deviation of the informed trader’s private signal. σpd and
σpo represent the standard deviation of intraday and overnight returns, respectively. CPIE and
Std(CPIE) are the PERMNO-Year mean and standard deviation of CPIEOWR.

N Mean Std Q1 Median Q3

α 21,206 0.437 0.257 0.214 0.436 0.639
σu 21,206 0.075 0.068 0.022 0.062 0.109
σz 21,206 0.239 0.143 0.137 0.221 0.332
σi 21,206 0.030 0.286 0.013 0.021 0.027
σpd 21,206 0.010 0.005 0.006 0.009 0.012
σpo 21,206 0.006 0.004 0.004 0.006 0.008
CPIE 21,206 0.451 0.258 0.227 0.455 0.656
Std(CPIE) 21,206 0.137 0.047 0.109 0.142 0.171



Table 7: Return Reversals. This table reports regressions of the daily return at time t + 1
on the return, CPIE (CPIEGPIN or CPIEOWR), and the interaction at time t. Returns are
measured from open to open and they are computed as the sum of the intraday (rd) and overnight
returns (ro). We standardize both CPIE measures to have a standard deviation of one. We include
stock and year fixed effects and cluster standard errors by stock and year. ∗ indicates statistical
significance at the 10% level, ∗∗ at the 5%, and ∗∗∗ at the 1% level.

rt+1

OWR GPIN

rt -8.883∗∗∗ -6.955∗∗∗
(-6.88) (-6.91)

CPIEt 0.0136∗∗∗
(4.36)

CPIEt × rt 2.417∗∗∗
(4.16)

CPIEt 0.00704∗∗∗
(4.03)

CPIEt × rt 0.271∗∗
(2.58)

R2(%) 0.61 0.54
Obs. 5,284,078 5,284,078



Figure 1: PIN Tree. For a given trading day, private information arrives with
probability α. When there is no private information, buys and sells are Poisson
with intensity εB and εS. Private information is good news with probability δ. The
expected number of buys (sells) increases by µ in case of good (bad) news.
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Figure 2: PIN Parameters. This figure shows the distribution of yearly α, PIN , and µ, εB, εS parameter
estimates for the PIN model. The solid black line represents the median value, and the dotted lines represent
the 5, 25, 75, and 95 percentiles.
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Figure 3: XOM EO. This figure compares the real and simulated data for XOM in 1993 and 2012 using
the PIN model. In Panels A and B, the real data are marked as +. The real data are shaded according to
the CPIEPIN , with darker markers (+ magenta) representing high and lighter markers (+ cyan) low CPIEs.
High (low) probability states in the simulated data appear as a dark (light) “cloud” of points. The PIN model
has three states: no news, good news, and bad news. All the observations below (above) the dashed lines in
Panels A and B have turnover below (above) the annual mean of daily turnover. Panels C and D plot the
CPIEs for the real data as a function of turnover along with a dashed line indicating the mean turnover.

(a) XOM 1993 (b) XOM 2012

(c) XOM 1993 (d) XOM 2012



Figure 4: Breakdown of the PIN Model. Panel A shows the distribution of the percent of trading days
in a year in which the PIN model identifies private information essentially in the same way as the naive
identification scheme. That is, Panel A plots the percentage of days where the |CPIEPIN − CPIENaive| <
10−10. CPIENaive is one for a given stock-day if turnover is higher than the annual mean of daily turnover,
and is zero otherwise. Panel B shows the distribution of the percent of days where the likelihood, given the
model parameters and observed order flow data is less than 10−10 — days, according to the model, with
near-zero probability of occurring. The solid black line represents the median stock, and the dashed lines
represent the 5, 25, 75, and 95 percentiles.
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Figure 5: Earnings Announcements - PIN. Panel A shows the average CPIEPIN for the PIN model in
event time surrounding earnings announcements. Panels B and C compare the average CPIEPIN with the
CPIEPIN predicted with either the absolute order imbalance (|B − S|) or turnover (turn), respectively. To
obtain the predictions, we run regressions of daily CPIEPIN on |B−S| or turn, and their respective squared
terms.
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Figure 6: GPIN Tree. Panel A presents a re-parameterization of the PIN model in terms of ratio of the
intensity of uninformed buyer initiated trades to the intensity of the total number of uninformed trades
(θ = εB/(εB + εS)), the ratio of the expected number of informed to uninformed trades on days where there
is private information (η = µ/(εB + εS) ), and the overall intensity of the number of buys plus sells as a
function of the arrival of private information (λ(Ii,t)). Panel B presents the GPIN model. The GPIN model
extends the PIN model by allowing the intensity of the number of trades on a given day t (λt) to be drawn
from a Gamma distribution with location and scale parameters r and p/(1−p), respectively. The information
structure remains the same as the one in the PIN model. For a given trading day, private information arrives
with probability α. When there is no private information, the number of buys (sells) is distributed as a
Poisson with intensity θ×λt

(
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)
. Private information is good (bad) news with probability δ (1−δ).
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Figure 7: XOM GPIN. This figure compares the real and simulated data for XOM in 1993 using the GPIN
model. In Panels A and B, the real data are marked as +. The real data are shaded according to the
CPIEGPIN , with darker markers (+ magenta) representing high and lighter markers (+ cyan) low CPIEs.
The simulated data points are represented by transparent dots, such that high probability states appear as a
dense, dark “cloud” of points, and low probability states appear as a light “cloud” of points. The GPIN model
has three states: no news, good news, and bad news. Panels C and D plot the CPIE values for the real data
as a function of turnover along with a dashed vertical line indicating the annual mean of daily turnover.

(a) XOM 1993 (b) XOM 2012

(c) XOM 1993 (d) XOM 2012



Figure 8: OWR Tree. In the OWR model, prior to markets opening, private information arrives with
probability α. Once markets open, investors submit their trades generating order imbalance (ye), and the
intraday return (rd). After markets close, private information becomes public and is reflected in the overnight
return (ro). The variables (ye, rd, ro) are normally distributed with mean zero and covariance Σ, where Σ is
function of the information arrival indicator (I). For instance, when there is no private information, there is
a reversal in the returns (cov(rd, ro) < 0) and when there is private information there is a continuation in the
returns (cov(rd, ro) > 0).
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Figure 9: OWR α. This figure shows the distribution of yearly α parameter esti-
mates for the OWR model. The solid black line represents the median value, and
the dashed lines represent the 5, 25, 75, and 95 percentiles.
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Figure 10: Earnings Announcements. Panel A (B) shows the average CPIEGPIN (CPIEOWR) for the
GPIN (OWR) model in event time surrounding earnings announcements.
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Figure 11: Earnings Announcements - GPIN Decomposition. Panels A and B compare the average
CPIEGPIN with the CPIEGPIN predicted using either |B−S|

B+S
or turnover (turn), respectively. To obtain the

predictions, we run regressions of daily CPIEGPIN on |B−S|
B+S

or turn, and their respective squared terms.
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Figure 12: Earnings Announcements - OWR Decomposition. Panels A–F
compare the average CPIEOWR with the CPIEOWR predicted using the squared
and interaction terms of ye, rd, and ro.
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(b) Prediction using r2d

20 15 10 5 0 5 10 15 20

t

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

Predicted
CPIEOWR

(c) Prediction using r2o
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(d) Prediction using ye × rd
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(e) Prediction using ye × ro
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Figure 13: Opportunistic Insider Trades. Panel A (B) shows the average CPIEGPIN (CPIEOWR) for
the GPIN (OWR) model in event time surrounding opportunistic insider trades.
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A The DY model

Duarte and Young (2009) propose an extension of the PIN model that accounts for the

positive correlation between buys and sells. We show in this Appendix that the Duarte and

Young (2009) model also performs poorly late in our sample from 1993–2012.

A.1 The DY model

Duarte and Young (2009) extend the PIN model to address some of its shortcomings in

matching the order flow data. Specifically, the authors note that the PIN model implies that

the number of buys and sells are negatively correlated; however, in the data the correlation

between the number of buys and sells is overwhelmingly positive. To correct this problem,

Duarte and Young (2009) develop a model of private information arrival (the DY model).

As in the PIN model, the DY model posits that at the beginning of each day, informed

investors receive a private signal with probability α. If the private signal is positive, buy

orders from the informed traders arrive according to a Poisson distribution with intensity

µB. If the private signal is negative, informed sell orders arrive according to a Poisson

distribution with intensity µS. If the informed traders receive no private signal, they do not

trade.

In contrast to the PIN model, the DY model allows for symmetric order flow shocks.

These shocks increase both the number of buyer- and seller-initiated trades but are unre-

lated to private information events. Symmetric order flow shocks can happen for a variety

of reasons, such as disagreement among traders about the interpretation of public news.

Alternatively, liquidity shocks may occur that cause investors holding different collections of

assets to simultaneously rebalance their portfolios, resulting in increases to both buys and

sells. Regardless of the mechanism, symmetric order flow shocks arrive on any given day

with probability θ. On days with symmetric order flow shocks, both the number of buyer-

and seller-initiated trades increase by amounts drawn from independent Poisson distribu-

tions with intensity ∆B or ∆S, respectively. Buy and sell orders from uninformed traders

arrive according to a Poisson distribution with intensities εB (εB + ∆B) and εS (εS + ∆S) on

days without (with) symmetric order flow shocks. Fig. A1 shows the structure of the DY
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model.

Under the DY model, turnover can increase due to either symmetric order flow shocks or

the arrival of private information. To see this, note that the expected number of buys plus

sells on days with positive (negative) information and without symmetric order flow shocks

is εB + εS +µB (εB + εS +µS); the expected number of trades on days with symmetric order

flow shocks and without private information shocks is εB + εS + ∆B + ∆S, and the expected

number of trades is εB + εS on days without either.

A.2 Estimation of the DY model

As with the PIN model, we estimate the DY model numerically via maximum likelihood. Let

ΘDY,i = (αi, µBi
, µSi

, εBi
, εSi

, δi, θi,∆Bi
,∆Si

) be the vector of parameters of the DY model

for stock i. Let Bi,t and Si,t be the number of buys and sells, respectively, for stock i on

day t. Let DDY,i,t = [Bi,t, Si,t,ΘDY,i]. The likelihood function of the extended model is∏T
t=1 L(DDY,i,t):

L(DDY,i,t) = LNI,NS(DDY,i,t) + LNI,S(DDY,i,t) + LI−,NS(DDY,i,t) (1)

+LI−,S(DDY,i,t) + LI+,NS(DDY,i,t) + LI+,S(DDY,i,t)

where LNI,NS(DDY,i,t) is the likelihood of observing Bi,t and Si,t on a day without private

information or a symmetric order flow shock; LNI,S(DDY,i,t) is the likelihood of Bi,t and Si,t

on a day without private information but with a symmetric order flow shock; LI−,NS (LI−,S)

is the likelihood of Bi,t and Si,t on a day with negative information and without (with) a

symmetric order flow shock; and LI+,NS (LI+,S) is the probability on a day with positive

information and without (with) a symmetric order flow shock. Analogous to the original

PIN model, each term in the likelihood function corresponds to a branch in the tree in Fig.

A1 and each term is given by:
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LNI,NS(DDY,i,t) = (1− αi)(1− θi)e−εBi
ε
Bi,t

Bi

Bi,t!
e−εSi

ε
Si,t

Si

Si,t!
(2)

LNI,S(DDY,i,t) = (1− αi)θie−(εBi
+∆Bi

) (εBi
+ ∆Bi

)Bi,t

Bi,t!
e−(εSi

+∆Si
) (εSi

+ ∆Si
)Si,t

Si,t!
(3)

LI−,NS(DDY,i,t) = αi(1− θi)(1− δi)e−εBi
ε
Bi,t

Bi

Bi,t!
e−(µSi

+εSi
) (µSi

+ εSi
)Si,t

Si,t!
(4)

LI−,S(DDY,i,t) = αiθi(1− δi)e−(εBi
+∆Bi

) (εBi
+ ∆Bi

)Bi,t

Bi,t!
e−(µSi

+εSi
+∆Si

) (µSi
+ εSi

+ ∆Si
)Si,t

Si,t!
(5)

LI+,NS(DDY,i,t) = αi(1− θi)δie−(µBi
+εBi

) (µBi
+ εBi

)Bi,t

Bi,t!
e−εS

ε
Si,t

Si

Si,t!
(6)

LI+,S(DDY,i,t) = αiθiδie
−(µBi

+εBi
+∆Bi

) (µBi
+ εBi

+ ∆Bi
)Bi,t

Bi,t!
e−(εSi

+∆Si
) (εSi

+ ∆Si
)Si,t

Si,t!
(7)

In order to avoid local optima, we use the maximum of the likelihood maximization

with ten different starting points as in Duarte and Young (2009). In addition, for one of the

starting points we choose (εB, εS) values, and (εB+∆B, εS+∆S) equal to the sample means of

buys and sells computed by the k-means algorithm with k=2. The k-means algorithm looks

for clusters in the buys and sells such that each observation belongs to the cluster with the

nearest mean. Because we know a priori that buys and sells have a strong positive correlation

(see Duarte and Young (2009)), we partition the sample into high and low order flow clusters,

which correspond to the symmetric order flow shock/no symmetric order flow shock states in

the DY model. The other nine starting points are randomized. This procedure ensures that

at least one of the starting points is centered properly, as the numerical likelihood estimation

using purely random starts often stops at points outside of the central clusters of data.

A.3 CPIEDY

As with the PIN model, for each stock-day, we compute the probability of an information

event conditional on both the model parameters and on the number of buys and sells observed

that day. Specifically, let the indicator Ii,t take the value of one if an information event occurs

for stock i on day t and zero otherwise. We compute CPIEDY,i,t = P [Ii,t = 1|DDY,i,t] as:

CPIEDY,i,t =
LI+,NS(DDY,i,t) + LI+,S(DDY,i,t) + LI−,S(DDY,i,t) + LI−,NS(DDY,i,t)

L(DDY,i,t)
(8)
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Analogous to the PIN model, the Adj. PIN of a stock is α(δµB+(1−δ)µS)
α(δµB+(1−δ)µS)+εB+εS+θ(∆B+∆S)

.

This is the unconditional probability that any given trade is initiated by an informed trader.

CPIEDY and Adj. PIN are linked via the unconditional probability of an information event,

α, which is also the unconditional expectation of CPIEDY .

Table A1 contains summary statistics for the parameter estimates for the DY model as

well as summary statistics of the cross-sectional sample means and standard deviations of

CPIEDY . We see that the mean CPIE behaves exactly like α. Hence, changes in CPIEDY

and changes in the estimated alphas are analogous.

A.4 How does the DY model identify private information?

To illustrate how the CPIEDY works, we present a stylized example of the DY model in Fig.

A2. In Panel A we plot simulated and real order flow data for Exxon-Mobil during 1993,

with buys on the horizontal axis and sells on the vertical axis. Real data are marked as +,

and simulated data as transparent dots. The real data are shaded according to the CPIE,

with lighter points (+ cyan) representing low and darker points (+ magenta) high CPIEs.

The DY model generates six data clusters, greatly improving upon the PIN model’s

coverage of the data in 1993. The two clusters on the dotted line are not related to private

information, but the other four clusters are. An econometrician using the DY model, moving

along the dotted line, would observe that high turnover days–considered information days

under the PIN model–are no longer classified as such, because higher turnover may be driven

by symmetric order flow shocks under the DY model. Instead, the DY model identifies private

information when moving away from the dotted line; when buys are greater than sells and

vice versa.

Unfortunately, late in the sample the DY model breaks down. Panel B of Fig. A2 shows

that the DY model, like the PIN model, fails to fit the majority of the order flow data for

Exxon-Mobil in 2012. The problem of fitting the data is not limited to our stylized example.

Fig. A3 shows that after 2005 the DY model estimates that the total likelihood for 80% of

the order flow data of the median stock is less than 10−10.

As a more formal test of the DY model, Table A2 presents regressions of CPIEDY based

on simulated and real data. The right-hand side variables are the absolute order imbalance

4



adjusted for buy/sell correlations (|adj.OIB|), turnover and its squared term. We define the

adjusted absolute order imbalance as the absolute value of the residual from a regression

of buys on sells. We use this measure to analyze the DY model because, as Fig. A2

suggests, the DY model implies that days with information events are far from the dashed

line in this figure.1 Turnover, as before, is defined as the sum of buys and sells. We report

median coefficient estimates and t−statistics across all firms within a particular year. The

coefficients are standardized as above. We report the average of the median, the 5th, and

the 95th percentiles of the R2s and R2
incs.

As with the CPIEPIN , in theory, turnover has little additional power in explaining

CPIEDY . The incremental R2s in Table A2 Panel A are low with an average value close to

4%. This is smaller than the average incremental R2s of the PIN model. The intuition for

this result is that the DY model disentangles turnover and order flow shocks by including the

possibility of symmetric order flow shocks. Buying and selling activity can simultaneously

be higher than average, but this is not indicative of private information unless there is a

large order flow imbalance.

Panel B of Table A2 reports regression results for the real, rather than simulated, data.

The DY model behaves very differently when using real data as opposed to data generated

from the model. The R2s for the real data are much lower than those in the simulated data,

declining from 35% in 1993 to 12% in 2012. The incremental R2 indicates that turnover and

turnover squared explain a large degree of variation in CPIEDY . Indeed, the average ratio

of the median R2s, R2
inc./(R

2 +R2
inc.), is about 40%. The p-values are the average probability

(under the DY model) of observing an incremental R2 larger or equal to the observed in the

real data and %Rej. is the frequency that we reject the null hypothesis that the incremental

R2 is consistent with the DY model at 5% significance. In 1993, our hypothesis test based

rejects the model at 5% significance for 48% of the stocks, while in 2012 this percentage

increases to around 70%.

1Our results are qualitatively similar if we use absolute order imbalance instead of adjusted absolute order
imbalance.
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B The EEOW model

Easley, Engle, O’Hara, and Wu (2008) propose a model in which PIN is time-varying. They

estimate this model for a sample of 16 stocks. We show in this Appendix that the Easley,

Engle, O’Hara, and Wu (2008) model also performs poorly late in our sample from 1993–

2012.

B.1 The EEOW model

Easley, Engle, O’Hara, and Wu (2008) develop a model in which PIN is time-varying.

They do so by allowing the expected number of informed and non-informed trades to be

time-varying. Specifically, let the vector ψt = [αµt, 2εt]
′ represent the expected number of

informed and non-informed trades on day t, and ψ̃i,t = ψi,te
−git , i = 1, 2, be the detrended

arrival rates. In the Easley, Engle, O’Hara, and Wu (2008) model, ψ̃t follows the generalized

autoregressive process

ψ̃t = ω + Φψ̃t−1 + ΓZ̃t (9)

where ω, Φ, and Γ are matrices of constants and Z̃ is a vector composed by the detrended

absolute order imbalance and the detrended total number of trades minus the absolute order

imbalance. Conditional on ψt, the arrival rates of buyer and seller initiated trades are like

those in the PIN model. That is, the uninformed buys and sells are distributed as Poisson

with intensity εt, the number of trades initiated by informed investors are distributed as

Poisson with intensity µt, and private information arrives in the beginning of the day with

probability α.

B.2 Estimation of the EEOW model

As with the PIN model, we estimate the EEOW model numerically via maximum likelihood.

We estimate the EEOW for the same 16 stocks as in Easley, Engle, O’Hara, and Wu (2008)

for the sample period between 1993 and 2012. Let Bi,t (Si,t) represent the number of buys

(sells) for stock i on day t and ΘEEOW,i,t = (αi, µi,t, εi,t, δi) represent a vector with some the

EEOW model parameters for stock i. Let DEEOW,i,t = [ΘEEOW,i,t, Bi,t, Si,t]. Conditional on

εi,t and µi,t, the EEOW model behaves as the PIN model. Therefore, conditional on εi,t and
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µi,t, the likelihood of observing Bi,t and Si,t on a day without an information event, on a day

with positive information event, and on a day with a negative information event are:

LNI(DEEOW,i,t) = (1− αi)e−εi,t
ε
Bi,t

i,t

Bi,t!
e−εi,t

ε
Si,t

i,t

Si,t!
(10)

LI+(DEEOW,i,t) = αiδie
−(µi,t+εi,t)

(µi,t + εi,t)
Bi,t

Bi,t!
e−εi,t

ε
Si,t

i,t

Si,t!
(11)

LI−(DEEOW,i,t) = αi(1− δi)e−εi,t
ε
Bi,t

i,t

Bi,t!
e−(µi,t+εi,t)

(µi,t + εi,t)
Si,t

Si,t!
(12)

where LNI(DEEOW,i,t) is the likelihood of observing Bi,t and Si,t on a day without private

information trading; LI− (LI+) is the likelihood of Bi,t and Si,t on a day with negative

(positive) information. The likelihood function of the EEOW model is
∏T

t=1 L(DEEOW,i,t),

where L(DEEOW,i,t) = LNI(DEEOW,i,t) + LI+(DEEOW,i,t) + LI−(DEEOW,i,t). The parameters

εi,t and µi,t are obtained from equation 9 and the time trend parameter are set equal to the

mean of the log-growth of Z.

B.3 CPIEEEOW

CPIEEEOW is defined in the same way as CPIEPIN . That is, CPIEEEOW is the ratio

(LI+(DEEOW,i,t)+LI−(DEEOW,i,t))/L(DEEOW,i,t). We compute CPIEEEOW in the same way

that we compute CPIEPIN(see Appendix Section D.3 for details).

B.4 How does the EEOW model identify private information?

To illustrate how the CPIEEEOW works, we present a stylized example of the EEOW model

in Fig. A4. In Panel A we plot simulated and real order flow data for Exxon-Mobil during

1993, with buys on the horizontal axis and sells on the vertical axis. Real data are marked

as +, and simulated data as transparent dots. The real data are shaded according to the

CPIE, with lighter points (+ cyan) representing low and darker points (+ magenta) high

CPIEs.

The EEOW model generates three data clusters, but generates increased variation in

turnover relative to the PIN, due to serial correlation in arrival rates with a deterministic

trend. The clusters are not as distinct as those generated by the PIN model, but the intuition

is the same.
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Unfortunately, late in the sample the EEOW model breaks down. Panel B of Fig. A4

shows that the EEOW model, like the PIN and DY models, fails to fit the majority of the

order flow data for Exxon-Mobil in 2012. Even though the EEOW model is a much richer

description of the order flow data than the PIN model, it also breaks down due to the increase

in turnover that we see in the late period of our sample. The problem of fitting the data is

not limited to our stylized example, and is reflected in our formal regression tests.

Table A3 presents regressions of CPIEEEOW based on simulated and real data. The right-

hand side variables are the absolute order imbalance (|OIB|), turnover and their squared

terms. We report median coefficient estimates and t−statistics across the 16 symbols from

Easley, Engle, O’Hara, and Wu (2008) within a particular year. The coefficients are stan-

dardized as above. We report the average of the median, the 5th, and the 95th percentiles of

the R2s and R2
incs.

As with the CPIEPIN , in theory, turnover has little additional power in explaining

CPIEEEOW . The incremental R2s in Table A3 Panel A are low with an average value close

to 4%. This is smaller than the average incremental R2s of the PIN model. The intuition for

this result is that the EEOW model disentangles turnover and order flow shocks by modelling

their arrival rates separately in the GARCH model.

Panel B of Table A3 reports regression results for the real, rather than simulated, data.

The EEOW model behaves very differently when using real data as opposed to data generated

from the model. The R2s for the real data are much lower than those in the simulated data.

The incremental R2 indicates that turnover and turnover squared explain a large degree of

variation in CPIEEEOW . The p-values are the average probability (under the EEOW model)

of observing an incremental R2 larger or equal to the observed in the real data and %Rej. is

the frequency that we reject the null hypothesis that the incremental R2 is consistent with

the EEOW model at 5% significance. In the first half of our sample, our hypothesis test

based rejects the model at 5% significance for 60% of the stocks, while in the latter half this

percentage increases to around 63%.
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C Estimating Order Flow, ro,i,t and rd,i,t

Wharton Research Data Services (WRDS) provides trades matched to National Best Bid

and Offer (NBBO) quotes at 0, 1, 2, and 5 second delay intervals. We use only “regular

way” trades, with original time and/or corrected timestamps to avoid incorrect quotes or

non-standard settlement terms. For instance, trades that are settled in cash or settled the

next business day.2 Prior to 2000, we match “regular way” trades to quotes delayed for 5

seconds; between 2000 and 2007, we match trades to quotes delayed for 1 second; and after

2007, we match trades to quotes without any delay.

We classify the matched trades as either buys or sells following the Lee and Ready (1991)

algorithm, which classifies all trades occurring above (below) the bid-ask mid-point as buyer

(seller) initiated. We use a tick test to classify trades that occur at the mid-point of the

bid and ask prices. The tick test classifies trades as buyer (seller) initiated if the price was

above/(below) that of the previous trade.

To estimate ro,i,t and rd,i,t, we run daily cross-sectional regressions of overnight and in-

traday returns on a constant, historical β (based on the previous 5 years of monthly CRSP

returns), log market cap, log book-to-market (following Fama and French (1992), Fama and

French (1993), and Davis, Fama, and French (2000)). We impose min/max values for book

equity (before taking logs) of 0.017 and 3.13, respectively. If book equity is negative, we

set it to 1 before taking logs, so that it is zero after taking logs. We use the residuals from

these daily cross-sectional regressions, winsorized at the 1 and 99% levels as our idiosyncratic

intraday (rd,i,t) and overnight (ro,i,t) returns.

D Details of the PIN model

D.1 PIN Likelihood

Let Bi,t (Si,t) represent the number of buys (sells) for stock i on day t and ΘPIN,i =

(αi, µi, εBi
, εSi

, δi) represent the vector of the PIN model parameters for stock i. Let

DPIN,i,t = [ΘPIN,i, Bi,t, Si,t]. The likelihood of observing Bi,t and Si,t on a day without an

information event, on a day with positive information event, and on a day with a negative

2Trade COND of (“@”,“*”, or “ ”) and CORR of (0,1)
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information event are:

LNI(DPIN,i,t) = (1− αi)e−εBi
ε
Bi,t

Bi

Bi,t!
e−εSi

ε
Si,t

Si

Si,t!
(13)

LI+(DPIN,i,t) = αiδie
−(µi+εBi

) (µi + εBi
)Bi,t

Bi,t!
e−εSi

ε
Si,t

Si

Si,t!
(14)

LI−(DPIN,i,t) = αi(1− δi)e−εBi
ε
Bi,t

Bi

Bi,t!
e−(µi+εi,S) (µi + εi,S)Si,t

Si,t!
(15)

where LNI(DPIN,i,t) is the likelihood of observing Bi,t and Si,t on a day without private

information trading; LI− (LI+) is the likelihood of Bi,t and Si,t on a day with negative

(positive) information.

D.2 Maximum likelihood procedure

To estimate the PIN likelihood function, we use the maximum of the likelihood maximization

with ten different starting points as in Duarte and Young (2009). We note, however, that

late in the sample, the likelihood functions of the PIN are very close to zero. After 2006, the

PIN model suggests that 90% of the observed daily order flows for the median stock have

a near-zero probability (i.e. smaller than 10−10) of occurring. This makes the estimation

susceptible to local optima. To get around this problem, we choose one of our ten starting

points to be such that the PIN model clusters are close to the observed mean of the number

of buys and sells. Specifically, we choose εB and εS values equal to the sample means of buys

and sells, α equal to 1%, and delta equal to the mean absolute value of order imbalance.

The other nine starting points are randomized. We do this in order to ensure that at least

one of the starting points is centered properly, as the numerical likelihood estimation using

purely random starts often stops at points outside of the central cluster of data.

D.3 Computing CPIEPIN

In Section 2 of the paper, we define the CPIE as the ratio of the “news” likelihood func-

tions to the sum total of the likelihood functions. In practice, there are many cases in the

PIN model for which the data a near-zero probability of occurring, meaning L(DPIN,i,t) =

LNI(DPIN,i,t) + LI+(DPIN,i,t) + LI−(DPIN,i,t) is smaller than 10−10. As a result the CPIE

ratio frequently results in a divide by zero error.
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In order to compute CPIE for these days, we “center” the likelihoods around the state

with the highest log-likelihood before computing the CPIE. For example, consider the PIN

model with:

Lmax ≡ max{LNI , LI+ , LI−}, (16)

`max ≡ log(Lmax) (17)

where ` represents the log of the corresponding likelihood function. We compute the centered

versions of each of the likelihood functions:

`′NI = `NI − `max, (18)

`′I+ = `I+ − `max, (19)

`′I− = `I− − `max. (20)

We compute the CPIE ′ as:

CPIE ′PIN =
L′I+ + L′I−

L′NI + L′I+ + L′I−
(21)

such that the most likely state has L′ = 1. For a high turnover day, it may be the case that

L′I+ = 1, L′I− = 0 and L′NI = 0; hence, the CPIE’ will be 1. This computational procedure

is equivalent to taking the limit of CPIEPIN as L(DPIN,i,t) goes to zero. We follow a similar

procedure to compute CPIEDY .

E Details of the GPIN model

The GPIN model extends the PIN model to allow for continuous variation in turnover un-

related to private information arrival.

E.1 The microstructure of the GPIN model

The market maker knows that the number of trades (i.e. B + S) on day t is distributed

as a Poisson random variable with intensity λt. The trade intensity, λt, is drawn from a

Gamma distribution with parameters r and p. In what follows, in the interest of clarity, we

suppress the t subscript on λ. The market maker does not observe λ directly, she only sees
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the buy and sell orders as they arrive. The market maker also knows that at the beginning of

every day the probability that informed traders receive a private signal is α. If the informed

receive a private signal, then the market maker knows that some fraction of the day’s total

number of trades will be informed. If the informed traders receive no private signal, then all

trades are uninformed. If there is no information in the market, then conditional on λ, the

sum of buys and sells is drawn from a Poisson distribution with arrival rate λ. If informed

traders do receive a private signal, η represents the ratio of the expected number of informed

to uninformed trades. Thus, if informed traders receive a private signal then the fraction of

informed trade to total trade is η
1+η

. The corresponding fraction of uninformed trade is equal

to 1 − η
1+η

= 1
1+η

. Thus, if informed traders receive a private signal, then conditional on

λ, the total arrival rate of orders remains equal to ( 1
1+η

+ η
1+η

)λ=λ. It is immediately clear

from this intuition that the probability of informed trade under the GPIN model is simply

the unconditional expected fraction of informed trade to total trade, PINGPIN = αη
1+η

. The

PINGPIN does not involve λ because λ determines the overall intensity of trade, but not the

split between informed and uninformed trade.

Formally, the probability that any given trade is informed is equal to the expected number

of informed trades divided by the expected number of trades. This ratio is:

E[Inf. Trades]

E[Trades]
=

E[E[Inf. Trades|λ]]

E[E[Trades|λ]]
. (22)

The numerator for the GPIN is E[αδ
(

η
1+η

)
λ + α(1 − δ)

(
η

1+η

)
λ], and the denominator is

simply E[λ]. Simplifying we get that PINGPIN = αη
1+η

.

To see the connection between the PINPIN and PINGPIN , first note that we can write

the formula for PINPIN using Equation 22. Using the reparameterization of the PIN

model presented in Section 3.1, the numerator is α × E[Inf. Trades|λ = λ(1)] + (1 − α) ×

E[Inf. Trades|λ = λ(0)]. The expected number of informed trades on days with private

information (λ = λ(1)) in the PIN model is µ and zero otherwise, hence the numerator of

Equation 22 reduces to α × µ. Under the PIN model, the denominator of Equation 22 is

α × E[Trades|λ = λ(1)] + (1 − α) × E[Trades|λ = λ(0)]. The expected number of trades

on days with private information (λ = λ(1)) in the PIN model is εB + εS + µ and εB + εS

otherwise. Hence the denominator of Equation 22 reduces to εB + εS +α×µ, which leads to
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the formula PINPIN = αµ
αµ+εB+εS

. Note that unlike the PINPIN , α does not appear in the

denominator of the PINGPIN . This difference occurs because, in the PIN model, everything

else equal, stocks with higher α have higher expected turnover. This relation has a direct

impact on the denominator of Equation 22 and comes about because of the conflation of

expected turnover and the arrival of private information in the PIN model (see Equation

1 in the paper). In the GPIN model, on the other hand, expected turnover (λ) is drawn

independently of private information arrival. Hence, α has no effect on expected turnover

and thus no place in the denominator of Equation 22.

Finally, to verify that the GPIN model captures the same microstructure intuition as the

PIN model, consider the bid-ask spread under the GPIN model and the PIN model. Following

similar logic to that in Easley, Keifer, O’Hara and Paperman (1996), the expression for the

opening bid-ask spread under the GPIN model is the same as that under the PIN model:

αη

1 + η
× (V − V ) = PINGPIN × (V − V ) (23)

where V is the value of the firm conditional on good news and V represents the value of the

firm conditional on bad news.

E.2 Negative binomial distribution in GPIN model

In the GPIN model, conditional on λt the distribution of turnover (B + S) is Poisson with

intensity λt. Moreover, λt is drawn from Gamma(r, p/(1 − p)) distribution. Hence, the

probability that B + S is equal to x in a given day is:

f(x; r, p) =

∫ ∞
0

λx

x!
λr−1 e

−λ(1−p)/p

( p
1−p)rΓ(r)

dλ =
(1− p)rp−r

Γ(r)
pr+xΓ(r + x) (24)

which is the well known Negative Binomial(r, p) (see Casella and Berger (2002)).

E.3 GPIN maximum likelihood estimation

Let ΘGPIN = (α, δ, η, θ, r, p) be the vector of parameters of the GPIN model. Let Bi,t (Si,t)

represent the number of buys (sells) for stock i on day t and DGPIN,i,t = [ΘGPIN,i, Bi,t, Si,t].

The likelihood function of the extended PIN model is
∏T

t=1 L(DGPIN,i,t), where

L(DPIN,i,t) = LNI(DGPIN,i,t) + LI+(DGPIN,i,t) + LI−(DGPIN,i,t). (25)
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Define the function:

f(B, S; r, p, θ) =
θB(1− θ)S

B!S!

(1− p)rp−r

Γ(r)
pr+B+SΓ(r +B + S) (26)

And the parameters θI+ = (η + θ)/(1 + η), θI− = θ/(1 + η)

LNI(DGPIN,i,t) = (1− α)f(B, S; r, p, θ)

LI+(DGPIN,i,t) = αδf(B, S; r, p, θI+)

LI+(DGPIN,i,t) = α(1− δ)f(B, S; r, p, θI−) (27)

Conditional on λt and analogous to the original PIN model, each term in the likeli-

hood function corresponds to a branch in the GPIN tree in the paper. We maximize the

GPIN likelihood function in two steps. First we estimate the parameters r and p to fit the

Negative Binomial(r, p) distribution to the turnover data. We then maximize the GPIN

likelihood with fixed r and p to obtain estimates of α, δ, η and θ. Analogous to the estimation

of the PIN likelihood, in each step we use the maximum likelihood based on ten random

starting points to avoid picking up local maxima.

E.4 Computing CPIEGPIN

As with the PIN model, for each stock-day, we compute the probability of an informa-

tion event conditional on both the model parameters and on the number of buys and sells

observed that day. We compute CPIEGPIN,i,t = P [Ii,t = 1|DGPIN,i,t], which is equal to

(LI−(DGPIN,i,t)+LI+(DGPIN,i,t))/L(DGPIN,i,t). We compute CPIEGPIN in the same way as

we compute CPIEPIN , see Section D.3 for details. The analytical formula for CPIEGPIN

is:

CPIEGPIN =
αδθBI+(1− θI+)S + α(1− δ)θBI−(1− θI−)S

(1− α)θB(1− θ)S + αδθBI+(1− θI+)S + α(1− δ)θBI−(1− θI−)S
(28)
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E.5 The GPIN model does not conflate turnover with private in-
formation

As a formal test of the GPIN model we run regressions of CPIEGPIN on the proportion

of imbalanced trades ( |B−S|
B+S

) and a squared term (
( |B−S|
B+S

)2
).3 We use |B−S|

B+S
to analyze the

GPIN model because, as we discuss in the paper, the GPIN model implies that days with

information events are the ones in which the proportion of imbalanced trades is large.

Panel A of Table A4 presents the results of regressions based on simulated data. As in

the case of the regressions for the PIN model in the paper, we report the median coefficient

estimates and t-statistics. The coefficients are standardized so they represent the increase

in CPIEGPIN due to a one standard deviation increase in the corresponding independent

variable. We also report the average of the median, the 5th, and the 95th percentiles of the

empirical distribution of R2s of these regressions generated by the 1,000 simulations. In

general the GPIN model identifies private information from the proportion of imbalanced

trades. The median R2 values are high, ranging from 61%-92%, while the incremental R2

from turnover is small-typically below 4%.

Panel B of Table A4 reports regression results for the real rather than simulated data. In

contrast to the PIN model, in the real data the GPIN model identifies private information

from the proportion of imbalanced trades and not turnover. The median R2 values are high,

ranging from 38%–72%, while the incremental R2 from turnover is small—typically below

1%. Naturally, the GPIN model is not a perfect description of the order flow data. This

can be seen from the fact that R2 values using the real data are on average lower than those

in the simulated data. However, the GPIN model fixes the conflation of arrival of private

information with turnover, namely in the majority of stock-year observations in the real data

the incremental R2 due to turnover is at least as large as the incremental R2 in the simulated

data. Therefore, the GPIN model, while not a perfect description of the order flow data,

fixes the problem of the PIN model which mechanically identifies private information from

higher turnover.

3We do not directly compare the simulations of the GPIN model to those of the PIN model. Instead
we compare the real data for each model to the simulated data under the null hypothesis that each model
identifies information consistent with the theory.
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F Details about the OWR model

F.1 OWR Likelihood

Let ΘOWR,i = (αi, σui , σzi , σii , σp,di , σp,oi) be the vector of parameters of this model. The

parameter αi is the probability that there is an information event on a given day. σ2
zi

is

the variance of the noise of the observed net order flow (ye); σ
2
ui

is the variance of the

net order flow from noise traders; σ2
ii

is the variance of the private signal received by the

informed trader; σ2
p,di

is the variance of the intraday return; σ2
p,oi

is the variance of the

overnight return. Let rd,i,t, (ro,i,t) represent the intraday and overnight returns for stock i

on day t, and (ye,i,t) represent the order flow imbalance for stock i on day t. Let DOWR,i,t =

[ΘOWR,i, rd,i,t, ro,i,t, ye,i,t]. The likelihood of observing DOWR,i,t on a day without and with an

information event is:

LNI = (1− α)fNI(DOWR,i,t) (29)

LI = αfI(DOWR,i,t) (30)

where fNI(DOWR,i,t) is the joint probability density of (ye,i,t, ro,i,t, rd,i,t) on days without

information, fI(DOWR,i,t) is the density of (ye,t, ro,t, rd,t) on days with information events.

Both fNI(DOWR,i,t) and fI(DOWR,i,t) are multivariate normal with zero means and covariance

matrices ΩNIi and ΩIi . The covariance matrix ΩNIi has elements:

V ar(ye) = σ2
u + σ2

z , (31)

V ar(rd) = σ2
pd + ασ2

i /4, (32)

V ar(ro) = σ2
po + ασ2

i /4, (33)

Cov(rd, ro) = −ασ2
i /4, (34)

Cov(rd, ye) = α1/2σiσu/2, (35)

Cov(ro, ye) = −α1/2σiσu/2 (36)

16



And ΩIi :

V ar(ye) = (1 + 1/α)σ2
u + σ2

z , (37)

V ar(rd) = σ2
pd + (1 + α)σ2

i /4, (38)

V ar(ro) = σ2
po + (1 + α)σ2

i /4, (39)

Cov(rd, ro) = (1− α)σ2
i /4, (40)

Cov(rd, ye) = α−1/2σiσu/2 + α1/2σiσu/2, (41)

Cov(ro, ye) = α−1/2σiσu/2− α1/2σiσu/2 (42)

F.2 How does the OWR model identify private information?

In theory, the OWR model identifies private information from the covariance matrix of the

three variables in the model (ye,i,t, ro,i,t, rd,i,t). To analyze the model, we run the regression

of CPIEOWR on the squared and interaction terms of (ye,i,t, ro,i,t, rd,i,t):

CPIEOWR,i,t = β0+β1y
2
e,i,t+β2r

2
d,i,t+β3r

2
o,i,t+β4ye,i,trd,i,t+β5ye.i,tro,i,t+β6rd,i,tro,i,t+ui,t. (43)

Panel A of Table A5 presents median coefficient estimates, t-statistics, and three per-

centiles of R2s across all firms within a particular year using simulated data. The results

highlight the intuition behind the model. The probability of an information event on any

given day is increasing in the square of intraday returns, the interaction between imbalance

and intraday (or overnight) returns, and the interaction between intraday and overnight

returns. The coefficient estimates on the square of the order imbalance and on the square

of overnight returns are too small to be precisely measured. The high R2s indicate that,

practically speaking, the square of intraday returns, the interaction between intraday and

overnight returns and the interaction between intraday returns and order flow imbalance are

sufficient to explain a large part of the variation in CPIEOWR.

Panel B of Table A5 shows the median coefficient estimates, t-statistics, and the results

of the hypothesis tests based on R2s across all firms within a particular year using real data.

Unlike the PIN, DY, and EEOW models, the coefficient estimates are consistent across the

simulated and real data. For instance in simulated data regressions in Panel A, 2008 is the

only year in which y2
e is the most important term. In the real data regressions in Panel B,
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2008 is also the only year in which y2
e is the most important term, indicating that the model

matches the features of the data quite well, even for clear outliers like 2008. Furthermore,

as with the simulated data regressions, the high median R2s indicate that a large part of the

variation in CPIEOWR is explained by the squared and interaction terms of (ye,i,t, ro,i,t, rd,i,t)

as implied by the model. The average across years of the R2s in Panel B is about 83% and

these R2s increase over time, reaching 90% in 2012. Moreover, we reject the null hypothesis

that the R2s observed in the real data are consistent with the OWR model at 5% level for

about 40% of the sample in 1993 and for about 8% of the sample in 2012.

The high R2s in Panel B imply that, in principle, any variable unrelated to private

information under the OWR model has only a small incremental value in explaining the

CPIEOWR. To see this note that the typical R2 in Panel B is around 85%. This suggests

that any additional regressor, even if it explained 100% of the residual variation in the

regressions in Panel B, could only marginally improve the R2 from 85% to 100%. Note that

in the case of the PIN, DY, and EEOW models, our results show that turnover, which in

principle is a poor measure of private information, largely drives these models’ identification

of private information. In contrast, under the OWR model the variables related to private

information in the model (squares and interactions of ye, ro, and rd) can explain a fairly

large amount of the variation in CPIEOWR. As a result, any variable that is not related to

private information in the OWR model can only explain a relatively small fraction of the

variation in CPIEOWR.
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Table A1: DY Estimates. This table summarizes parameter estimates of the DY model
for 21,206 PERMNO-Year samples from 1993–2012. α represents the average unconditional
probability of an information event at the daily level. εB and εS represent the expected
number of daily buys and sells given no private information or symmetric order flow shocks.
µb, and µs represent the expected additional order flows given an information event, which
is good news with probability δ and bad news with probability 1 − δ. A symmetric order
flow shock occurs with probability θ, in which case the expected number of buys and sells
increase by ∆B and ∆S, respectively. CPIE and Std(CPIE) are the PERMNO-Year mean
and standard deviation of CPIEDY .

N Mean Std Q1 Median Q3

α 21,206 0.456 0.092 0.409 0.464 0.509
δ 21,206 0.550 0.192 0.441 0.541 0.680
θ 21,206 0.249 0.137 0.149 0.253 0.344
εb 21,206 1,418 4,571 26 158 866
εs 21,206 1,397 4,570 28 148 807
∆b 21,206 2,148 10,058 41 190 989
∆s 21,206 2,097 9,934 34 160 908
µb 21,206 290 575 29 119 310
µs 21,206 284 574 27 107 302
CPIE 21,206 0.455 0.092 0.409 0.461 0.506
Std(CPIE) 21,206 0.454 0.056 0.431 0.479 0.493



Table A2: DY Model Regressions. This table reports real and simulated regressions of the CPIEDY on absolute adjusted
order imbalance (|adj. OIB|), and absolute adjusted order imbalance squared (|adj. OIB|2). In Panel A, we simulate 1,000
instances of the DY model for each PERMNO-Year in our sample (1993–2012) and report mean standardized estimates for the
median stock, along with 5%, 50%, and 95% values of the R2 (R2

inc.) values. We compute the incremental R2
inc. as the R2

attributed to turn and turn2 in an extended regression model. In Panel B, we report standardized estimates for the median
stock using real data, along with the median R2 and R2

inc. values, and tests of the null hypothesis that the observed relation
between CPIEDY and turn is consistent with the DY model. The p-value is the average probability of observing an R2

inc. at
least as large as what is observed in the real data. The % Rej. is the fraction of stocks for which we reject the hypothesis at
the 5% level.

(a) Simulated Data

β t R2 R2
inc.

|adj. OIB| |adj. OIB|2 |adj. OIB| |adj. OIB|2 5% 50% 95% 5% 50% 95%

1993 0.518 -0.230 (10.88) (-4.74) 52.28% 59.44% 66.01% 5.55% 9.86% 15.29%
1994 0.484 -0.214 (10.47) (-4.42) 50.66% 58.06% 64.97% 5.56% 9.46% 14.95%
1995 0.475 -0.214 (9.96) (-4.32) 46.81% 54.46% 61.69% 7.01% 11.71% 17.54%
1996 0.516 -0.229 (10.54) (-4.60) 51.36% 58.62% 65.21% 5.18% 9.09% 14.31%
1997 0.513 -0.221 (10.33) (-4.40) 50.55% 57.80% 64.50% 4.78% 8.57% 14.03%
1998 0.537 -0.236 (10.60) (-4.49) 52.85% 60.14% 66.63% 4.00% 7.45% 12.31%
1999 0.607 -0.281 (11.92) (-5.45) 56.53% 63.49% 69.68% 3.07% 6.11% 10.47%
2000 0.597 -0.272 (11.43) (-5.09) 55.69% 62.59% 69.09% 2.82% 5.65% 9.73%
2001 0.729 -0.350 (13.81) (-6.75) 65.81% 71.48% 76.83% 0.62% 1.87% 4.09%
2002 0.769 -0.371 (15.03) (-7.28) 71.90% 76.37% 80.55% 0.24% 1.04% 2.41%
2003 0.805 -0.394 (16.06) (-7.99) 74.77% 78.95% 82.78% 0.34% 1.19% 2.71%
2004 0.798 -0.385 (15.94) (-7.61) 77.39% 81.40% 84.70% 0.23% 0.95% 2.22%
2005 0.787 -0.365 (16.23) (-7.40) 79.40% 83.08% 86.23% 0.25% 0.97% 2.20%
2006 0.761 -0.332 (15.52) (-6.74) 79.38% 83.00% 86.15% 0.45% 1.41% 2.88%
2007 0.736 -0.311 (12.97) (-5.97) 69.81% 74.50% 79.19% 1.23% 2.93% 5.99%
2008 0.755 -0.317 (15.14) (-6.52) 77.82% 81.67% 85.36% 0.34% 1.21% 2.82%
2009 0.768 -0.331 (16.09) (-7.01) 79.54% 83.16% 86.38% 0.63% 1.70% 3.51%
2010 0.769 -0.329 (15.95) (-7.01) 78.65% 82.63% 86.22% 0.56% 1.64% 3.66%
2011 0.754 -0.313 (15.47) (-6.73) 77.75% 81.79% 85.71% 0.63% 1.87% 4.10%
2012 0.763 -0.328 (15.65) (-7.01) 77.64% 81.93% 85.61% 0.89% 2.25% 4.69%



Table A2: DY Model Regressions. Continued.

(b) Real Data

β t R2 R2
inc.

|adj. OIB| |adj. OIB|2 |adj. OIB| |adj. OIB|2 50% 50% p-value % Rej.

1993 0.369 -0.170 (7.61) (-3.48) 34.07% 15.22% 23.83% 48.21%
1994 0.348 -0.150 (7.51) (-3.16) 33.55% 14.53% 23.87% 48.38%
1995 0.342 -0.149 (6.99) (-3.00) 30.15% 15.63% 29.41% 43.47%
1996 0.358 -0.164 (7.33) (-3.42) 31.11% 14.19% 25.56% 50.64%
1997 0.334 -0.140 (6.49) (-2.78) 28.00% 13.92% 26.26% 50.56%
1998 0.329 -0.136 (6.21) (-2.62) 26.26% 12.97% 22.18% 57.16%
1999 0.365 -0.166 (6.91) (-3.16) 27.89% 12.56% 18.93% 62.38%
2000 0.333 -0.145 (5.75) (-2.55) 23.49% 11.88% 20.82% 62.06%
2001 0.374 -0.176 (6.38) (-3.06) 25.25% 9.07% 15.71% 74.29%
2002 0.328 -0.130 (4.82) (-1.90) 21.31% 9.08% 10.15% 82.14%
2003 0.334 -0.135 (4.84) (-1.98) 21.55% 8.58% 10.51% 81.42%
2004 0.295 -0.104 (4.15) (-1.46) 18.31% 9.57% 10.09% 83.63%
2005 0.279 -0.103 (4.03) (-1.51) 16.23% 10.61% 11.10% 82.60%
2006 0.243 -0.083 (3.40) (-1.17) 12.46% 11.15% 16.81% 77.86%
2007 0.219 -0.086 (3.14) (-1.25) 9.66% 12.26% 25.72% 65.76%
2008 0.217 -0.086 (3.05) (-1.23) 8.83% 11.92% 19.43% 74.90%
2009 0.230 -0.093 (3.24) (-1.30) 10.04% 11.43% 19.40% 74.53%
2010 0.241 -0.103 (3.41) (-1.49) 10.59% 12.38% 21.74% 71.55%
2011 0.245 -0.102 (3.45) (-1.50) 10.35% 13.05% 21.61% 71.57%
2012 0.275 -0.127 (4.04) (-1.86) 12.22% 12.20% 23.56% 70.88%



Table A3: EEOW Model Regressions. This table reports real and simulated regressions of the CPIEEEOW on absolute
order imbalance (|OIB|), and absolute adjusted order imbalance squared (|OIB|2). In Panel A, we simulate 1,000 instances of
the EEOW model for each symbol in Easley, Engle, O’Hara, and Wu (2008) found in our sample (1993–2012) and report mean
standardized estimates for the median stock, along with 5%, 50%, and 95% values of the R2 (R2

inc.) values. We compute the
incremental R2

inc. as the R2 attributed to turn and turn2 in an extended regression model. In Panel B, we report standardized
estimates for the median stock using real data, along with the median R2 and R2

inc. values, and tests of the null hypothesis that
the observed relation between CPIEEEOW and turn is consistent with the EEOW model. The p-value is the average probability
of observing an R2

inc. at least as large as what is observed in the real data. The % Rej. is the fraction of stocks for which we
reject the hypothesis at the 5% level.

(a) Simulated Data

β t R2 R2
inc.

|OIB| |OIB|2 |OIB| |OIB|2 5% 50% 95% 5% 50% 95%

1993 0.090 -0.062 (10.10) (-7.01) 21.43% 43.47% 58.48% 0.10% 1.49% 6.83%
1994 0.130 -0.109 (8.66) (-6.41) 33.40% 49.39% 58.85% 2.70% 8.03% 15.24%
1995 0.116 -0.077 (7.73) (-6.02) 25.81% 37.36% 47.11% 0.77% 4.64% 16.22%
1996 0.088 -0.065 (7.23) (-5.64) 20.76% 36.89% 55.70% 0.27% 2.44% 8.56%
1997 0.136 -0.113 (7.20) (-6.02) 18.11% 30.81% 47.95% 0.44% 2.54% 9.36%
1998 0.186 -0.161 (8.41) (-7.26) 22.91% 37.23% 49.63% 0.23% 2.39% 6.76%
1999 0.215 -0.154 (7.33) (-5.96) 23.48% 29.98% 42.98% 0.21% 1.66% 6.05%
2000 0.208 -0.132 (7.09) (-5.75) 34.32% 45.42% 53.80% 0.89% 6.04% 19.04%
2001 0.207 -0.174 (9.12) (-7.27) 19.84% 32.75% 47.72% 0.09% 1.32% 6.55%
2002 0.297 -0.188 (9.78) (-7.24) 36.97% 47.89% 53.86% 0.43% 4.08% 10.76%
2003 0.243 -0.179 (7.86) (-5.79) 27.14% 36.72% 47.99% 2.52% 7.45% 16.81%
2004 0.108 -0.097 (7.14) (-6.24) 11.43% 28.25% 40.21% 0.31% 2.78% 6.98%
2005 0.438 -0.322 (9.86) (-7.73) 36.17% 42.20% 48.99% 1.08% 5.71% 9.84%
2006 0.409 -0.241 (7.86) (-5.40) 41.73% 49.05% 57.73% 0.53% 1.88% 3.69%
2007 0.393 -0.268 (9.56) (-5.68) 37.00% 48.45% 58.58% 0.25% 7.15% 12.66%
2008 0.321 -0.226 (10.41) (-6.02) 46.49% 51.57% 64.73% 0.05% 0.59% 2.07%
2009 0.360 -0.275 (8.02) (-4.77) 33.72% 42.80% 46.99% 0.46% 5.36% 14.52%
2010 0.443 -0.311 (11.06) (-7.85) 43.37% 48.64% 53.34% 0.20% 0.80% 3.40%
2011 0.532 -0.322 (15.92) (-10.48) 51.05% 55.02% 67.94% 0.16% 3.34% 6.74%
2012 0.241 -0.199 (7.99) (-5.29) 27.52% 38.67% 51.73% 2.46% 4.10% 9.54%



Table A3: EEOW Model Regressions. Continued.

(b) Real Data

β t R2 R2
inc.

|OIB| |OIB|2 |OIB| |OIB|2 50% 50% p-value % Rej.

1993 0.166 -0.057 (3.44) (-2.17) 24.68% 7.74% 1.50% 64.29%
1994 0.238 -0.138 (6.68) (-3.32) 34.99% 15.81% 0.50% 57.14%
1995 0.153 -0.114 (5.38) (-3.95) 27.72% 11.75% 8.00% 46.67%
1996 0.156 -0.078 (3.96) (-2.04) 27.53% 13.00% 3.00% 53.33%
1997 0.221 -0.134 (4.63) (-2.67) 26.21% 16.24% 1.00% 56.25%
1998 0.190 -0.073 (3.46) (-1.64) 28.01% 17.19% 0.00% 66.67%
1999 0.186 -0.094 (3.34) (-1.76) 25.15% 7.69% 4.00% 57.14%
2000 0.297 -0.148 (6.11) (-3.34) 35.84% 15.06% 3.50% 57.14%
2001 0.270 -0.162 (5.00) (-2.95) 30.90% 15.10% 0.00% 83.33%
2002 0.330 -0.181 (6.16) (-3.50) 39.71% 11.78% 12.50% 50.00%
2003 0.189 -0.096 (3.51) (-2.15) 18.92% 9.01% 48.00% 28.57%
2004 0.193 -0.093 (3.80) (-1.97) 26.30% 12.90% 0.00% 54.55%
2005 0.146 -0.059 (2.74) (-1.18) 32.17% 15.22% 36.50% 41.67%
2006 0.262 -0.127 (4.91) (-2.34) 29.26% 15.61% 0.00% 60.00%
2007 0.109 0.002 (1.63) (0.03) 36.89% 29.67% 0.00% 70.00%
2008 0.123 -0.018 (1.88) (-0.28) 37.87% 32.38% 0.00% 72.73%
2009 0.118 -0.032 (2.01) (-0.53) 27.83% 16.28% 0.00% 57.14%
2010 0.050 0.030 (0.67) (0.45) 19.31% 14.07% 0.00% 90.00%
2011 0.095 -0.001 (1.28) (0.03) 33.20% 28.73% 0.00% 88.89%
2012 0.163 -0.030 (2.18) (-0.45) 26.24% 19.81% 0.00% 66.67%



Table A4: GPIN Model Regressions. This table reports real and simulated regressions of the CPIEGPIN on the proportion
of imbalanced trades

( |B−S|
B+S

)
and its square. In Panel A, we simulate 1,000 instances of the GPIN model for each PERMNO-Year

in our sample (1993–2012) and report mean standardized estimates for the median stock, along with 5%, 50%, and 95% values
of the R2 (R2

inc.) values. We compute the incremental R2
inc. as the R2 attributed to turn and turn2 in an extended regression

model. In Panel B, we report standardized estimates for the median stock using real data, along with the median R2 and R2
inc.

values, and tests of the null hypothesis that the observed relation between CPIEGPIN and turn is consistent with the GPIN
model. The p-value is the average probability of observing an R2

inc. at least as large as what is observed in the real data. The
% Rej. is the fraction of stocks for which we reject the hypothesis at the 5% level.

(a) Simulated Data

β t R2 R2
inc.

|B−S|
B+S

( |B−S|
B+S

)2 |B−S|
B+S

( |B−S|
B+S

)2
5% 50% 95% 5% 50% 95%

1993 0.382 -0.134 (8.22) (-3.04) 57.61% 63.37% 68.65% 1.79% 4.07% 7.31%
1994 0.355 -0.119 (8.19) (-2.83) 56.90% 62.64% 67.90% 1.76% 4.23% 7.74%
1995 0.350 -0.113 (7.86) (-2.59) 59.18% 64.87% 69.82% 1.68% 3.86% 7.24%
1996 0.364 -0.122 (8.31) (-2.90) 60.59% 65.85% 70.81% 1.60% 3.84% 6.94%
1997 0.369 -0.126 (8.03) (-2.84) 58.63% 64.01% 69.13% 1.29% 3.34% 6.34%
1998 0.388 -0.131 (8.93) (-3.03) 60.99% 66.95% 71.74% 1.02% 2.81% 5.69%
1999 0.465 -0.190 (10.90) (-4.26) 64.29% 69.23% 73.64% 1.01% 2.71% 5.10%
2000 0.447 -0.171 (9.34) (-3.60) 60.81% 65.74% 70.43% 0.82% 2.42% 4.95%
2001 0.425 -0.123 (6.77) (-2.08) 59.82% 65.02% 70.21% 0.71% 2.13% 4.40%
2002 0.243 0.007 (2.86) (0.08) 55.43% 61.22% 66.58% 0.52% 1.87% 3.97%
2003 0.033 0.202 (0.30) (1.95) 56.10% 62.06% 67.76% 0.51% 1.78% 4.05%
2004 -0.477 0.679 (-4.25) (6.10) 56.37% 62.52% 68.15% 0.38% 1.47% 3.43%
2005 0.343 -0.062 (3.38) (-0.67) 64.83% 70.03% 74.47% 0.16% 0.86% 2.23%
2006 0.294 -0.018 (3.16) (-0.21) 72.38% 77.14% 80.90% 0.06% 0.42% 1.30%
2007 0.778 -0.338 (17.81) (-7.59) 86.47% 88.49% 90.35% 0.02% 0.17% 0.54%
2008 0.784 -0.335 (18.60) (-7.90) 90.29% 91.75% 93.13% 0.01% 0.12% 0.42%
2009 0.774 -0.321 (19.72) (-8.04) 91.13% 92.47% 93.73% 0.01% 0.12% 0.40%
2010 0.773 -0.318 (19.47) (-7.97) 90.93% 92.27% 93.57% 0.01% 0.13% 0.45%
2011 0.783 -0.335 (19.80) (-8.16) 91.08% 92.48% 93.67% 0.01% 0.11% 0.40%
2012 0.781 -0.332 (19.89) (-8.23) 90.82% 92.27% 93.54% 0.01% 0.12% 0.41%



Table A4: GPIN Model Regressions. Continued.

(b) Real Data

β t R2 R2
inc.

|B−S|
B+S

( |B−S|
B+S

)2 |B−S|
B+S

( |B−S|
B+S

)2
50% 50% p-value % Rej.

1993 0.336 -0.113 (8.20) (-2.93) 57.90% 1.00% 87.77% 3.26%
1994 0.321 -0.108 (8.12) (-2.92) 56.55% 1.11% 84.63% 3.30%
1995 0.317 -0.098 (7.99) (-2.62) 58.03% 1.08% 82.66% 4.03%
1996 0.339 -0.117 (8.73) (-3.06) 59.28% 0.99% 84.95% 3.08%
1997 0.339 -0.117 (8.38) (-2.98) 57.53% 1.03% 82.25% 4.16%
1998 0.362 -0.132 (9.59) (-3.34) 61.34% 0.88% 82.57% 3.73%
1999 0.433 -0.183 (11.55) (-4.88) 62.95% 0.80% 81.82% 5.18%
2000 0.419 -0.168 (9.74) (-3.95) 58.88% 0.75% 81.03% 4.00%
2001 0.402 -0.143 (7.32) (-2.62) 50.55% 0.48% 84.33% 3.52%
2002 0.255 -0.020 (3.57) (-0.27) 42.07% 0.47% 80.50% 3.75%
2003 0.126 0.101 (1.70) (1.36) 40.55% 0.46% 80.20% 3.19%
2004 -0.067 0.280 (-0.88) (3.54) 38.32% 0.42% 75.32% 4.72%
2005 0.249 -0.015 (3.29) (-0.20) 41.68% 0.41% 70.49% 6.64%
2006 0.264 -0.021 (3.81) (-0.34) 43.41% 0.36% 59.43% 13.40%
2007 0.762 -0.447 (16.12) (-9.57) 66.36% 0.31% 40.73% 25.49%
2008 0.800 -0.480 (18.60) (-11.20) 70.98% 0.23% 39.63% 26.42%
2009 0.813 -0.492 (19.08) (-11.49) 71.79% 0.23% 39.13% 31.68%
2010 0.814 -0.488 (18.94) (-11.44) 72.77% 0.21% 41.33% 28.77%
2011 0.809 -0.480 (18.79) (-11.21) 71.67% 0.22% 39.58% 29.71%
2012 0.804 -0.475 (18.83) (-11.14) 72.72% 0.20% 42.12% 26.87%



Table A5: OWR Model Regressions. This table reports real and simulated regressions of the CPIEOWR on the squared
and interaction terms of ye, rd, and ro. In Panel A, we simulate 1,000 instances of the OWR model for each PERMNO-Year in
our sample (1993–2012) and report mean standardized estimates for the median stock, along with 5%, 50%, and 95% values of
the R2 values. In Panel B, we report standardized estimates for the median stock using real data, along with the median R2

values, and tests of the null that the model fits the data. The p-value is the average probability of observing an R2 at least as
small as what is observed in the real data. The % Rej. is the fraction of stocks for which we reject the null at the 5% level.

(a) Simulated Data

β t R2

y2e ye × rd ye × ro r2d rd × ro r2o y2e ye × rd ye × ro r2d rd × ro r2o 5% 50% 95%

1993 0.002 0.068 -0.003 0.017 0.016 0.096 (0.42) (11.52) (-0.66) (2.71) (3.34) (17.78) 68.29% 79.86% 88.22%
1994 0.002 0.065 -0.003 0.018 0.017 0.093 (0.53) (12.10) (-0.67) (3.14) (3.80) (18.95) 70.03% 81.70% 89.67%
1995 0.003 0.065 -0.003 0.019 0.018 0.093 (0.57) (12.03) (-0.71) (3.14) (4.00) (18.83) 69.82% 81.98% 89.91%
1996 0.003 0.066 -0.003 0.020 0.019 0.094 (0.68) (12.73) (-0.76) (3.77) (4.43) (20.14) 72.12% 83.64% 91.18%
1997 0.003 0.063 -0.003 0.018 0.018 0.092 (0.77) (14.31) (-0.80) (4.05) (4.73) (21.45) 73.01% 85.04% 92.43%
1998 0.002 0.070 -0.004 0.018 0.017 0.102 (0.67) (16.25) (-1.01) (4.14) (4.70) (24.53) 74.91% 86.68% 93.93%
1999 0.003 0.060 -0.003 0.017 0.018 0.093 (0.74) (13.90) (-0.75) (3.88) (4.86) (22.15) 72.82% 84.70% 92.22%
2000 0.003 0.051 -0.002 0.017 0.019 0.085 (0.87) (13.37) (-0.58) (4.20) (5.64) (22.86) 73.87% 85.03% 92.21%
2001 0.002 0.066 -0.004 0.014 0.014 0.098 (0.51) (17.18) (-1.15) (3.72) (4.25) (26.22) 76.05% 87.58% 94.14%
2002 0.001 0.066 -0.003 0.012 0.013 0.099 (0.44) (18.37) (-1.03) (3.40) (3.89) (27.41) 76.47% 87.94% 94.40%
2003 0.002 0.071 -0.005 0.014 0.013 0.105 (0.48) (19.18) (-1.53) (3.50) (3.84) (27.86) 77.31% 88.81% 94.93%
2004 0.001 0.068 -0.005 0.012 0.012 0.100 (0.49) (21.61) (-1.91) (4.05) (4.06) (30.04) 79.32% 90.05% 95.22%
2005 0.002 0.061 -0.005 0.012 0.012 0.086 (0.60) (22.68) (-2.02) (4.35) (4.35) (31.06) 80.89% 90.80% 95.18%
2006 0.001 0.063 -0.004 0.011 0.011 0.089 (0.52) (22.88) (-1.91) (3.95) (4.14) (30.37) 80.34% 90.48% 95.19%
2007 0.001 0.051 -0.003 0.002 0.004 0.068 (0.65) (22.32) (-1.69) (0.78) (1.68) (28.67) 81.21% 90.63% 95.41%
2008 0.076 0.000 -0.001 0.000 0.004 0.001 (27.51) (0.07) (-0.25) (0.10) (1.42) (0.29) 76.59% 88.91% 95.17%
2009 0.002 0.039 -0.002 0.001 0.005 0.060 (1.18) (18.30) (-0.73) (0.35) (2.36) (27.24) 80.66% 90.07% 95.06%
2010 0.002 0.038 -0.002 0.000 0.000 0.046 (0.94) (18.05) (-1.34) (0.13) (0.23) (22.24) 78.97% 88.62% 94.54%
2011 0.001 0.042 -0.002 0.000 0.000 0.055 (0.79) (19.58) (-1.37) (0.11) (0.16) (24.64) 80.82% 90.39% 95.10%
2012 0.001 0.046 -0.003 0.000 0.000 0.055 (0.68) (19.47) (-1.55) (0.11) (0.22) (23.02) 79.83% 89.47% 94.62%



Table A5: OWR Model Regressions. Continued.

(b) Real Data

β t R2

y2e ye × rd ye × ro r2d rd × ro r2o y2e ye × rd ye × ro r2d rd × ro r2o 50%

1993 -0.000 0.053 -0.000 0.032 0.029 0.055 (-0.03) (7.24) (-0.13) (4.41) (4.56) (8.11) 69.97%
1994 0.000 0.053 -0.001 0.032 0.027 0.060 (0.06) (8.11) (-0.17) (4.69) (4.68) (9.44) 72.00%
1995 0.001 0.052 -0.001 0.033 0.029 0.059 (0.15) (7.92) (-0.17) (4.74) (4.89) (9.35) 72.73%
1996 0.001 0.055 -0.003 0.032 0.028 0.062 (0.28) (8.61) (-0.52) (4.77) (4.81) (9.83) 73.65%
1997 0.002 0.054 -0.002 0.029 0.027 0.061 (0.36) (8.90) (-0.53) (4.85) (4.84) (10.17) 74.72%
1998 0.002 0.069 -0.004 0.025 0.023 0.074 (0.37) (11.25) (-0.89) (4.43) (4.15) (12.61) 77.46%
1999 0.002 0.057 -0.003 0.025 0.025 0.065 (0.56) (9.59) (-0.64) (4.33) (4.58) (11.66) 76.48%
2000 0.003 0.050 -0.003 0.021 0.022 0.066 (0.82) (10.58) (-0.98) (4.50) (5.15) (14.37) 79.83%
2001 0.001 0.068 -0.003 0.018 0.016 0.078 (0.47) (14.62) (-0.94) (4.10) (3.81) (16.91) 83.25%
2002 0.002 0.072 -0.002 0.016 0.014 0.081 (0.47) (16.83) (-0.72) (3.88) (3.71) (19.17) 84.71%
2003 0.002 0.080 -0.003 0.017 0.015 0.080 (0.60) (20.66) (-0.94) (4.38) (3.93) (20.51) 87.22%
2004 0.001 0.077 -0.005 0.016 0.012 0.074 (0.54) (24.74) (-1.74) (4.48) (3.58) (21.11) 88.70%
2005 0.002 0.072 -0.005 0.013 0.010 0.065 (0.83) (25.08) (-2.12) (4.36) (3.32) (20.58) 89.54%
2006 0.002 0.072 -0.005 0.013 0.010 0.066 (0.74) (25.53) (-1.61) (4.12) (3.36) (20.42) 89.47%
2007 0.002 0.058 -0.003 0.004 0.005 0.058 (0.98) (18.17) (-0.97) (1.40) (1.79) (17.59) 89.34%
2008 0.077 0.004 -0.002 0.003 0.006 0.007 (22.41) (1.10) (-0.55) (1.07) (2.00) (1.54) 88.02%
2009 0.003 0.038 -0.002 0.004 0.006 0.053 (1.55) (15.99) (-0.87) (1.85) (2.42) (22.33) 89.34%
2010 0.002 0.035 -0.002 0.002 0.003 0.038 (1.39) (16.80) (-0.69) (1.02) (1.53) (15.83) 89.54%
2011 0.002 0.043 -0.002 0.002 0.003 0.050 (1.27) (17.71) (-0.84) (1.04) (1.50) (18.56) 89.84%
2012 0.002 0.045 -0.003 0.002 0.003 0.039 (1.14) (20.34) (-1.05) (1.20) (1.54) (17.30) 90.29%



Figure A1: DY Tree. For a given trading day, private information arrives with probability
α. When there is no private information, buys and sells are Poisson with intensity εB and εS.
Private information is good news with probability δ. The expected number of buys (sells)
increases by µ in case of good (bad) news. Non-information related order flow shocks arrive
with probability θ. In the event of an order flow shock, buys and sells increase by δb and δs
respectively.



Figure A2: XOM DY. This figure compares the real and simulated data for XOM in 1993
and in 2012 using the DY model. In Panels A and B, the real data are marked as +. The real
data are shaded according to the CPIEDY , with darker markers (+ magenta) representing
high and lighter markers (+ cyan) low CPIEs. The simulated data points are represented
by transparent dots, such that high probability states appear as a dense, dark “cloud” of
points, and low probability states appear as a light “cloud” of points. The DY model extends
the three states of the PIN model corresponding to no news, good news, and bad news with
three additional states with higher order flows due to non-information symmetric order flow
shocks.

(a) XOM 1993 (b) XOM 2012



Figure A3: Breakdown of the DY Model. This figure shows the distribution of the
percent of days where the total likelihood, given the model parameters and observed order
flow data is less than 10−10—days, according to the model, with near-zero probability of
occurring. The solid black line represents the median stock, and the dotted lines represent
the 5, 25, 75, and 95 percentiles.
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Figure A4: XOM EEOW. This figure compares the real and simulated data for XOM in
1993 and in 2012 using the EEOW model. In Panels A and B, the real data are marked as
+. The real data are shaded according to the CPIEDY , with darker markers (+ magenta)
representing high and lighter markers (+ cyan) low CPIEs. The simulated data points are
represented by transparent dots, such that high probability states appear as a dense, dark
“cloud” of points, and low probability states appear as a light “cloud” of points.
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